/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/sort.h>
#include "amdgpu.h"
#include "umc_v6_7.h"
#define MAX_UMC_POISON_POLLING_TIME_SYNC 20 //ms
#define MAX_UMC_HASH_STRING_SIZE 256
static int amdgpu_umc_convert_error_address(struct amdgpu_device *adev,
struct ras_err_data *err_data, uint64_t err_addr,
uint32_t ch_inst, uint32_t umc_inst)
{
switch (amdgpu_ip_version(adev, UMC_HWIP, 0)) {
case IP_VERSION(6, 7, 0):
umc_v6_7_convert_error_address(adev,
err_data, err_addr, ch_inst, umc_inst);
break;
default:
dev_warn(adev->dev,
"UMC address to Physical address translation is not supported\n");
return AMDGPU_RAS_FAIL;
}
return AMDGPU_RAS_SUCCESS;
}
int amdgpu_umc_page_retirement_mca(struct amdgpu_device *adev,
uint64_t err_addr, uint32_t ch_inst, uint32_t umc_inst)
{
struct ras_err_data err_data;
int ret;
ret = amdgpu_ras_error_data_init(&err_data);
if (ret)
return ret;
err_data.err_addr =
kcalloc(adev->umc.max_ras_err_cnt_per_query,
sizeof(struct eeprom_table_record), GFP_KERNEL);
if (!err_data.err_addr) {
dev_warn(adev->dev,
"Failed to alloc memory for umc error record in MCA notifier!\n");
ret = AMDGPU_RAS_FAIL;
goto out_fini_err_data;
}
err_data.err_addr_len = adev->umc.max_ras_err_cnt_per_query;
/*
* Translate UMC channel address to Physical address
*/
ret = amdgpu_umc_convert_error_address(adev, &err_data, err_addr,
ch_inst, umc_inst);
if (ret)
goto out_free_err_addr;
if (amdgpu_bad_page_threshold != 0) {
amdgpu_ras_add_bad_pages(adev, err_data.err_addr,
err_data.err_addr_cnt);
amdgpu_ras_save_bad_pages(adev, NULL);
}
out_free_err_addr:
kfree(err_data.err_addr);
out_fini_err_data:
amdgpu_ras_error_data_fini(&err_data);
return ret;
}
void amdgpu_umc_handle_bad_pages(struct amdgpu_device *adev,
void *ras_error_status)
{
struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
unsigned int error_query_mode;
int ret = 0;
unsigned long err_count;
amdgpu_ras_get_error_query_mode(adev, &error_query_mode);
mutex_lock(&con->page_retirement_lock);
ret = amdgpu_dpm_get_ecc_info(adev, (void *)&(con->umc_ecc));
if (ret == -EOPNOTSUPP &&
error_query_mode == AMDGPU_RAS_DIRECT_ERROR_QUERY) {
if (adev->umc.ras && adev->umc.ras->ras_block.hw_ops &&
adev->umc.ras->ras_block.hw_ops->query_ras_error_count)
adev->umc.ras->ras_block.hw_ops->query_ras_error_count(adev, ras_error_status);
if (adev->umc.ras && adev->umc.ras->ras_block.hw_ops &&
adev->umc.ras->ras_block.hw_ops->query_ras_error_address &&
adev->umc.max_ras_err_cnt_per_query) {
err_data->err_addr =
kcalloc(adev->umc.max_ras_err_cnt_per_query,
sizeof(struct eeprom_table_record), GFP_KERNEL);
/* still call query_ras_error_address to clear error status
* even NOMEM error is encountered
*/
if(!err_data->err_addr)
dev_warn(adev->dev, "Failed to alloc memory for "
"umc error address record!\n");
else
err_data->err_addr_len = adev->umc.max_ras_err_cnt_per_query;
/* umc query_ras_error_address is also responsible for clearing
* error status
*/
adev->umc.ras->ras_block.hw_ops->query_ras_error_address(adev, ras_error_status);
}
} else if (error_query_mode == AMDGPU_RAS_FIRMWARE_ERROR_QUERY ||
(!ret && error_query_mode == AMDGPU_RAS_DIRECT_ERROR_QUERY)) {
if (adev->umc.ras &&
adev->umc.ras->ecc_info_query_ras_error_count)
adev->umc.ras->ecc_info_query_ras_error_count(adev, ras_error_status);
if (adev->umc.ras &&
adev->umc.ras->ecc_info_query_ras_error_address &&
adev->umc.max_ras_err_cnt_per_query) {
err_data->err_addr =
kcalloc(adev->umc.max_ras_err_cnt_per_query,
sizeof(struct eeprom_table_record), GFP_KERNEL);
/* still call query_ras_error_address to clear error status
* even NOMEM error is encountered
*/
if(!err_data->err_addr)
dev_warn(adev->dev, "Failed to alloc memory for "
"umc error address record!\n");
else
err_data->err_addr_len = adev->umc.max_ras_err_cnt_per_query;
/* umc query_ras_error_address is also responsible for clearing
* error status
*/
adev->umc.ras->ecc_info_query_ras_error_address(adev, ras_error_status);
}
}
/* only uncorrectable error needs gpu reset */
if (err_data->ue_count || err_data->de_count) {
err_count = err_data->ue_count + err_data->de_count;
if ((amdgpu_bad_page_threshold != 0) &&
err_data->err_addr_cnt) {
amdgpu_ras_add_bad_pages(adev, err_data->err_addr,
err_data->err_addr_cnt);
amdgpu_ras_save_bad_pages(adev, &err_count);
amdgpu_dpm_send_hbm_bad_pages_num(adev, con->eeprom_control.ras_num_recs);
if (con->update_channel_flag == true) {
amdgpu_dpm_send_hbm_bad_channel_flag(adev, con->eeprom_control.bad_channel_bitmap);
con->update_channel_flag = false;
}
}
}
kfree(err_data->err_addr);
err_data->err_addr = NULL;
mutex_unlock(&con->page_retirement_lock);
}
static int amdgpu_umc_do_page_retirement(struct amdgpu_device *adev,
void *ras_error_status,
struct amdgpu_iv_entry *entry,
uint32_t reset)
{
struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
amdgpu_umc_handle_bad_pages(adev, ras_error_status);
if ((err_data->ue_count || err_data->de_count) &&
(reset || amdgpu_ras_is_rma(adev))) {
con->gpu_reset_flags |= reset;
amdgpu_ras_reset_gpu(adev);
}
return AMDGPU_RAS_SUCCESS;
}
int amdgpu_umc_pasid_poison_handler(struct amdgpu_device *adev,
enum amdgpu_ras_block block, uint16_t pasid,
pasid_notify pasid_fn, void *data, uint32_t reset)
{
int ret = AMDGPU_RAS_SUCCESS;
if (adev->gmc.xgmi.connected_to_cpu ||
adev->gmc.is_app_apu) {
if (reset) {
/* MCA poison handler is only responsible for GPU reset,
* let MCA notifier do page retirement.
*/
kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
amdgpu_ras_reset_gpu(adev);
}
return ret;
}
if (!amdgpu_sriov_vf(adev)) {
if (amdgpu_ip_version(adev, UMC_HWIP, 0) < IP_VERSION(12, 0, 0)) {
struct ras_err_data err_data;
struct ras_common_if head = {
.block = AMDGPU_RAS_BLOCK__UMC,
};
struct ras_manager *obj = amdgpu_ras_find_obj(adev, &head);
ret = amdgpu_ras_error_data_init(&err_data);
if (ret)
return ret;
ret = amdgpu_umc_do_page_retirement(adev, &err_data, NULL, reset);
if (ret == AMDGPU_RAS_SUCCESS && obj) {
obj->err_data.ue_count += err_data.ue_count;
obj->err_data.ce_count += err_data.ce_count;
obj->err_data.de_count += err_data.de_count;
}
amdgpu_ras_error_data_fini(&err_data);
} else {
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
int ret;
ret = amdgpu_ras_put_poison_req(adev,
block, pasid, pasid_fn, data, reset);
if (!ret) {
atomic_inc(&con->page_retirement_req_cnt);
wake_up(&con->page_retirement_wq);
}
}
} else {
if (adev->virt.ops && adev->virt.ops->ras_poison_handler)
adev->virt.ops->ras_poison_handler(adev, block);
else
dev_warn(adev->dev,
"No ras_poison_handler interface in SRIOV!\n");
}
return ret;
}
int amdgpu_umc_poison_handler(struct amdgpu_device *adev,
enum amdgpu_ras_block block, uint32_t reset)
{
return amdgpu_umc_pasid_poison_handler(adev,
block, 0, NULL, NULL, reset);
}
int amdgpu_umc_process_ras_data_cb(struct amdgpu_device *adev,
void *ras_error_status,
struct amdgpu_iv_entry *entry)
{
return amdgpu_umc_do_page_retirement(adev, ras_error_status, entry,
AMDGPU_RAS_GPU_RESET_MODE1_RESET);
}
int amdgpu_umc_ras_sw_init(struct amdgpu_device *adev)
{
int err;
struct amdgpu_umc_ras *ras;
if (!adev->umc.ras)
return 0;
ras = adev->umc.ras;
err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
if (err) {
dev_err(adev->dev, "Failed to register umc ras block!\n");
return err;
}
strcpy(adev->umc.ras->ras_block.ras_comm.name, "umc");
ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__UMC;
ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
adev->umc.ras_if = &ras->ras_block.ras_comm;
if (!ras->ras_block.ras_late_init)
ras->ras_block.ras_late_init = amdgpu_umc_ras_late_init;
if (!ras->ras_block.ras_cb)
ras->ras_block.ras_cb = amdgpu_umc_process_ras_data_cb;
return 0;
}
int amdgpu_umc_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
{
int r;
r = amdgpu_ras_block_late_init(adev, ras_block);
if (r)
return r;
if (amdgpu_ras_is_supported(adev, ras_block->block)) {
r = amdgpu_irq_get(adev, &adev->gmc.ecc_irq, 0);
if (r)
goto late_fini;
}
/* ras init of specific umc version */
if (adev->umc.ras &&
adev->umc.ras->err_cnt_init)
adev->umc.ras->err_cnt_init(adev);
return 0;
late_fini:
amdgpu_ras_block_late_fini(adev, ras_block);
return r;
}
int amdgpu_umc_process_ecc_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
struct ras_common_if *ras_if = adev->umc.ras_if;
struct ras_dispatch_if ih_data = {
.entry = entry,
};
if (!ras_if)
return 0;
ih_data.head = *ras_if;
amdgpu_ras_interrupt_dispatch(adev, &ih_data);
return 0;
}
int amdgpu_umc_fill_error_record(struct ras_err_data *err_data,
uint64_t err_addr,
uint64_t retired_page,
uint32_t channel_index,
uint32_t umc_inst)
{
struct eeprom_table_record *err_rec;
if (!err_data ||
!err_data->err_addr ||
(err_data->err_addr_cnt >= err_data->err_addr_len))
return -EINVAL;
err_rec = &err_data->err_addr[err_data->err_addr_cnt];
err_rec->address = err_addr;
/* page frame address is saved */
err_rec->retired_page = retired_page >> AMDGPU_GPU_PAGE_SHIFT;
err_rec->ts = (uint64_t)ktime_get_real_seconds();
err_rec->err_type = AMDGPU_RAS_EEPROM_ERR_NON_RECOVERABLE;
err_rec->cu = 0;
err_rec->mem_channel = channel_index;
err_rec->mcumc_id = umc_inst;
err_data->err_addr_cnt++;
return 0;
}
int amdgpu_umc_loop_channels(struct amdgpu_device *adev,
umc_func func, void *data)
{
uint32_t node_inst = 0;
uint32_t umc_inst = 0;
uint32_t ch_inst = 0;
int ret = 0;
if (adev->umc.node_inst_num) {
LOOP_UMC_EACH_NODE_INST_AND_CH(node_inst, umc_inst, ch_inst) {
ret = func(adev, node_inst, umc_inst, ch_inst, data);
if (ret) {
dev_err(adev->dev, "Node %d umc %d ch %d func returns %d\n",
node_inst, umc_inst, ch_inst, ret);
return ret;
}
}
} else {
LOOP_UMC_INST_AND_CH(umc_inst, ch_inst) {
ret = func(adev, 0, umc_inst, ch_inst, data);
if (ret) {
dev_err(adev->dev, "Umc %d ch %d func returns %d\n",
umc_inst, ch_inst, ret);
return ret;
}
}
}
return 0;
}
int amdgpu_umc_update_ecc_status(struct amdgpu_device *adev,
uint64_t status, uint64_t ipid, uint64_t addr)
{
if (adev->umc.ras->update_ecc_status)
return adev->umc.ras->update_ecc_status(adev,
status, ipid, addr);
return 0;
}
int amdgpu_umc_logs_ecc_err(struct amdgpu_device *adev,
struct radix_tree_root *ecc_tree, struct ras_ecc_err *ecc_err)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_ecc_log_info *ecc_log;
int ret;
ecc_log = &con->umc_ecc_log;
mutex_lock(&ecc_log->lock);
ret = radix_tree_insert(ecc_tree, ecc_err->pa_pfn, ecc_err);
if (!ret)
radix_tree_tag_set(ecc_tree,
ecc_err->pa_pfn, UMC_ECC_NEW_DETECTED_TAG);
mutex_unlock(&ecc_log->lock);
return ret;
}