/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/slab.h>
#include <drm/drm_print.h>
#include "amdgpu_ring_mux.h"
#include "amdgpu_ring.h"
#include "amdgpu.h"
#define AMDGPU_MUX_RESUBMIT_JIFFIES_TIMEOUT (HZ / 2)
#define AMDGPU_MAX_LAST_UNSIGNALED_THRESHOLD_US 10000
static const struct ring_info {
unsigned int hw_pio;
const char *ring_name;
} sw_ring_info[] = {
{ AMDGPU_RING_PRIO_DEFAULT, "gfx_low"},
{ AMDGPU_RING_PRIO_2, "gfx_high"},
};
static struct kmem_cache *amdgpu_mux_chunk_slab;
static inline struct amdgpu_mux_entry *amdgpu_ring_mux_sw_entry(struct amdgpu_ring_mux *mux,
struct amdgpu_ring *ring)
{
return ring->entry_index < mux->ring_entry_size ?
&mux->ring_entry[ring->entry_index] : NULL;
}
/* copy packages on sw ring range[begin, end) */
static void amdgpu_ring_mux_copy_pkt_from_sw_ring(struct amdgpu_ring_mux *mux,
struct amdgpu_ring *ring,
u64 s_start, u64 s_end)
{
u64 start, end;
struct amdgpu_ring *real_ring = mux->real_ring;
start = s_start & ring->buf_mask;
end = s_end & ring->buf_mask;
if (start == end) {
DRM_ERROR("no more data copied from sw ring\n");
return;
}
if (start > end) {
amdgpu_ring_alloc(real_ring, (ring->ring_size >> 2) + end - start);
amdgpu_ring_write_multiple(real_ring, (void *)&ring->ring[start],
(ring->ring_size >> 2) - start);
amdgpu_ring_write_multiple(real_ring, (void *)&ring->ring[0], end);
} else {
amdgpu_ring_alloc(real_ring, end - start);
amdgpu_ring_write_multiple(real_ring, (void *)&ring->ring[start], end - start);
}
}
static void amdgpu_mux_resubmit_chunks(struct amdgpu_ring_mux *mux)
{
struct amdgpu_mux_entry *e = NULL;
struct amdgpu_mux_chunk *chunk;
uint32_t seq, last_seq;
int i;
/*find low priority entries:*/
if (!mux->s_resubmit)
return;
for (i = 0; i < mux->num_ring_entries; i++) {
if (mux->ring_entry[i].ring->hw_prio <= AMDGPU_RING_PRIO_DEFAULT) {
e = &mux->ring_entry[i];
break;
}
}
if (!e) {
DRM_ERROR("%s no low priority ring found\n", __func__);
return;
}
last_seq = atomic_read(&e->ring->fence_drv.last_seq);
seq = mux->seqno_to_resubmit;
if (last_seq < seq) {
/*resubmit all the fences between (last_seq, seq]*/
list_for_each_entry(chunk, &e->list, entry) {
if (chunk->sync_seq > last_seq && chunk->sync_seq <= seq) {
amdgpu_fence_update_start_timestamp(e->ring,
chunk->sync_seq,
ktime_get());
if (chunk->sync_seq ==
le32_to_cpu(*(e->ring->fence_drv.cpu_addr + 2))) {
if (chunk->cntl_offset <= e->ring->buf_mask)
amdgpu_ring_patch_cntl(e->ring,
chunk->cntl_offset);
if (chunk->ce_offset <= e->ring->buf_mask)
amdgpu_ring_patch_ce(e->ring, chunk->ce_offset);
if (chunk->de_offset <= e->ring->buf_mask)
amdgpu_ring_patch_de(e->ring, chunk->de_offset);
}
amdgpu_ring_mux_copy_pkt_from_sw_ring(mux, e->ring,
chunk->start,
chunk->end);
mux->wptr_resubmit = chunk->end;
amdgpu_ring_commit(mux->real_ring);
}
}
}
del_timer(&mux->resubmit_timer);
mux->s_resubmit = false;
}
static void amdgpu_ring_mux_schedule_resubmit(struct amdgpu_ring_mux *mux)
{
mod_timer(&mux->resubmit_timer, jiffies + AMDGPU_MUX_RESUBMIT_JIFFIES_TIMEOUT);
}
static void amdgpu_mux_resubmit_fallback(struct timer_list *t)
{
struct amdgpu_ring_mux *mux = from_timer(mux, t, resubmit_timer);
if (!spin_trylock(&mux->lock)) {
amdgpu_ring_mux_schedule_resubmit(mux);
DRM_ERROR("reschedule resubmit\n");
return;
}
amdgpu_mux_resubmit_chunks(mux);
spin_unlock(&mux->lock);
}
int amdgpu_ring_mux_init(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring,
unsigned int entry_size)
{
mux->real_ring = ring;
mux->num_ring_entries = 0;
mux->ring_entry = kcalloc(entry_size, sizeof(struct amdgpu_mux_entry), GFP_KERNEL);
if (!mux->ring_entry)
return -ENOMEM;
mux->ring_entry_size = entry_size;
mux->s_resubmit = false;
amdgpu_mux_chunk_slab = KMEM_CACHE(amdgpu_mux_chunk, SLAB_HWCACHE_ALIGN);
if (!amdgpu_mux_chunk_slab) {
DRM_ERROR("create amdgpu_mux_chunk cache failed\n");
return -ENOMEM;
}
spin_lock_init(&mux->lock);
timer_setup(&mux->resubmit_timer, amdgpu_mux_resubmit_fallback, 0);
return 0;
}
void amdgpu_ring_mux_fini(struct amdgpu_ring_mux *mux)
{
struct amdgpu_mux_entry *e;
struct amdgpu_mux_chunk *chunk, *chunk2;
int i;
for (i = 0; i < mux->num_ring_entries; i++) {
e = &mux->ring_entry[i];
list_for_each_entry_safe(chunk, chunk2, &e->list, entry) {
list_del(&chunk->entry);
kmem_cache_free(amdgpu_mux_chunk_slab, chunk);
}
}
kmem_cache_destroy(amdgpu_mux_chunk_slab);
kfree(mux->ring_entry);
mux->ring_entry = NULL;
mux->num_ring_entries = 0;
mux->ring_entry_size = 0;
}
int amdgpu_ring_mux_add_sw_ring(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring)
{
struct amdgpu_mux_entry *e;
if (mux->num_ring_entries >= mux->ring_entry_size) {
DRM_ERROR("add sw ring exceeding max entry size\n");
return -ENOENT;
}
e = &mux->ring_entry[mux->num_ring_entries];
ring->entry_index = mux->num_ring_entries;
e->ring = ring;
INIT_LIST_HEAD(&e->list);
mux->num_ring_entries += 1;
return 0;
}
void amdgpu_ring_mux_set_wptr(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring, u64 wptr)
{
struct amdgpu_mux_entry *e;
spin_lock(&mux->lock);
if (ring->hw_prio <= AMDGPU_RING_PRIO_DEFAULT)
amdgpu_mux_resubmit_chunks(mux);
e = amdgpu_ring_mux_sw_entry(mux, ring);
if (!e) {
DRM_ERROR("cannot find entry for sw ring\n");
spin_unlock(&mux->lock);
return;
}
/* We could skip this set wptr as preemption in process. */
if (ring->hw_prio <= AMDGPU_RING_PRIO_DEFAULT && mux->pending_trailing_fence_signaled) {
spin_unlock(&mux->lock);
return;
}
e->sw_cptr = e->sw_wptr;
/* Update cptr if the package already copied in resubmit functions */
if (ring->hw_prio <= AMDGPU_RING_PRIO_DEFAULT && e->sw_cptr < mux->wptr_resubmit)
e->sw_cptr = mux->wptr_resubmit;
e->sw_wptr = wptr;
e->start_ptr_in_hw_ring = mux->real_ring->wptr;
/* Skip copying for the packages already resubmitted.*/
if (ring->hw_prio > AMDGPU_RING_PRIO_DEFAULT || mux->wptr_resubmit < wptr) {
amdgpu_ring_mux_copy_pkt_from_sw_ring(mux, ring, e->sw_cptr, wptr);
e->end_ptr_in_hw_ring = mux->real_ring->wptr;
amdgpu_ring_commit(mux->real_ring);
} else {
e->end_ptr_in_hw_ring = mux->real_ring->wptr;
}
spin_unlock(&mux->lock);
}
u64 amdgpu_ring_mux_get_wptr(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring)
{
struct amdgpu_mux_entry *e;
e = amdgpu_ring_mux_sw_entry(mux, ring);
if (!e) {
DRM_ERROR("cannot find entry for sw ring\n");
return 0;
}
return e->sw_wptr;
}
/**
* amdgpu_ring_mux_get_rptr - get the readptr of the software ring
* @mux: the multiplexer the software rings attach to
* @ring: the software ring of which we calculate the readptr
*
* The return value of the readptr is not precise while the other rings could
* write data onto the real ring buffer.After overwriting on the real ring, we
* can not decide if our packages have been excuted or not read yet. However,
* this function is only called by the tools such as umr to collect the latest
* packages for the hang analysis. We assume the hang happens near our latest
* submit. Thus we could use the following logic to give the clue:
* If the readptr is between start and end, then we return the copy pointer
* plus the distance from start to readptr. If the readptr is before start, we
* return the copy pointer. Lastly, if the readptr is past end, we return the
* write pointer.
*/
u64 amdgpu_ring_mux_get_rptr(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring)
{
struct amdgpu_mux_entry *e;
u64 readp, offset, start, end;
e = amdgpu_ring_mux_sw_entry(mux, ring);
if (!e) {
DRM_ERROR("no sw entry found!\n");
return 0;
}
readp = amdgpu_ring_get_rptr(mux->real_ring);
start = e->start_ptr_in_hw_ring & mux->real_ring->buf_mask;
end = e->end_ptr_in_hw_ring & mux->real_ring->buf_mask;
if (start > end) {
if (readp <= end)
readp += mux->real_ring->ring_size >> 2;
end += mux->real_ring->ring_size >> 2;
}
if (start <= readp && readp <= end) {
offset = readp - start;
e->sw_rptr = (e->sw_cptr + offset) & ring->buf_mask;
} else if (readp < start) {
e->sw_rptr = e->sw_cptr;
} else {
/* end < readptr */
e->sw_rptr = e->sw_wptr;
}
return e->sw_rptr;
}
u64 amdgpu_sw_ring_get_rptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ring_mux *mux = &adev->gfx.muxer;
WARN_ON(!ring->is_sw_ring);
return amdgpu_ring_mux_get_rptr(mux, ring);
}
u64 amdgpu_sw_ring_get_wptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ring_mux *mux = &adev->gfx.muxer;
WARN_ON(!ring->is_sw_ring);
return amdgpu_ring_mux_get_wptr(mux, ring);
}
void amdgpu_sw_ring_set_wptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ring_mux *mux = &adev->gfx.muxer;
WARN_ON(!ring->is_sw_ring);
amdgpu_ring_mux_set_wptr(mux, ring, ring->wptr);
}
/* Override insert_nop to prevent emitting nops to the software rings */
void amdgpu_sw_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
{
WARN_ON(!ring->is_sw_ring);
}
const char *amdgpu_sw_ring_name(int idx)
{
return idx < ARRAY_SIZE(sw_ring_info) ?
sw_ring_info[idx].ring_name : NULL;
}
unsigned int amdgpu_sw_ring_priority(int idx)
{
return idx < ARRAY_SIZE(sw_ring_info) ?
sw_ring_info[idx].hw_pio : AMDGPU_RING_PRIO_DEFAULT;
}
/*Scan on low prio rings to have unsignaled fence and high ring has no fence.*/
static int amdgpu_mcbp_scan(struct amdgpu_ring_mux *mux)
{
struct amdgpu_ring *ring;
int i, need_preempt;
need_preempt = 0;
for (i = 0; i < mux->num_ring_entries; i++) {
ring = mux->ring_entry[i].ring;
if (ring->hw_prio > AMDGPU_RING_PRIO_DEFAULT &&
amdgpu_fence_count_emitted(ring) > 0)
return 0;
if (ring->hw_prio <= AMDGPU_RING_PRIO_DEFAULT &&
amdgpu_fence_last_unsignaled_time_us(ring) >
AMDGPU_MAX_LAST_UNSIGNALED_THRESHOLD_US)
need_preempt = 1;
}
return need_preempt && !mux->s_resubmit;
}
/* Trigger Mid-Command Buffer Preemption (MCBP) and find if we need to resubmit. */
static int amdgpu_mcbp_trigger_preempt(struct amdgpu_ring_mux *mux)
{
int r;
spin_lock(&mux->lock);
mux->pending_trailing_fence_signaled = true;
r = amdgpu_ring_preempt_ib(mux->real_ring);
spin_unlock(&mux->lock);
return r;
}
void amdgpu_sw_ring_ib_begin(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ring_mux *mux = &adev->gfx.muxer;
WARN_ON(!ring->is_sw_ring);
if (adev->gfx.mcbp && ring->hw_prio > AMDGPU_RING_PRIO_DEFAULT) {
if (amdgpu_mcbp_scan(mux) > 0)
amdgpu_mcbp_trigger_preempt(mux);
return;
}
amdgpu_ring_mux_start_ib(mux, ring);
}
void amdgpu_sw_ring_ib_end(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ring_mux *mux = &adev->gfx.muxer;
WARN_ON(!ring->is_sw_ring);
if (adev->gfx.mcbp && ring->hw_prio > AMDGPU_RING_PRIO_DEFAULT)
return;
amdgpu_ring_mux_end_ib(mux, ring);
}
void amdgpu_sw_ring_ib_mark_offset(struct amdgpu_ring *ring, enum amdgpu_ring_mux_offset_type type)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ring_mux *mux = &adev->gfx.muxer;
unsigned offset;
if (ring->hw_prio > AMDGPU_RING_PRIO_DEFAULT)
return;
offset = ring->wptr & ring->buf_mask;
amdgpu_ring_mux_ib_mark_offset(mux, ring, offset, type);
}
void amdgpu_ring_mux_start_ib(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring)
{
struct amdgpu_mux_entry *e;
struct amdgpu_mux_chunk *chunk;
spin_lock(&mux->lock);
amdgpu_mux_resubmit_chunks(mux);
spin_unlock(&mux->lock);
e = amdgpu_ring_mux_sw_entry(mux, ring);
if (!e) {
DRM_ERROR("cannot find entry!\n");
return;
}
chunk = kmem_cache_alloc(amdgpu_mux_chunk_slab, GFP_KERNEL);
if (!chunk) {
DRM_ERROR("alloc amdgpu_mux_chunk_slab failed\n");
return;
}
chunk->start = ring->wptr;
/* the initialized value used to check if they are set by the ib submission*/
chunk->cntl_offset = ring->buf_mask + 1;
chunk->de_offset = ring->buf_mask + 1;
chunk->ce_offset = ring->buf_mask + 1;
list_add_tail(&chunk->entry, &e->list);
}
static void scan_and_remove_signaled_chunk(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring)
{
uint32_t last_seq = 0;
struct amdgpu_mux_entry *e;
struct amdgpu_mux_chunk *chunk, *tmp;
e = amdgpu_ring_mux_sw_entry(mux, ring);
if (!e) {
DRM_ERROR("cannot find entry!\n");
return;
}
last_seq = atomic_read(&ring->fence_drv.last_seq);
list_for_each_entry_safe(chunk, tmp, &e->list, entry) {
if (chunk->sync_seq <= last_seq) {
list_del(&chunk->entry);
kmem_cache_free(amdgpu_mux_chunk_slab, chunk);
}
}
}
void amdgpu_ring_mux_ib_mark_offset(struct amdgpu_ring_mux *mux,
struct amdgpu_ring *ring, u64 offset,
enum amdgpu_ring_mux_offset_type type)
{
struct amdgpu_mux_entry *e;
struct amdgpu_mux_chunk *chunk;
e = amdgpu_ring_mux_sw_entry(mux, ring);
if (!e) {
DRM_ERROR("cannot find entry!\n");
return;
}
chunk = list_last_entry(&e->list, struct amdgpu_mux_chunk, entry);
if (!chunk) {
DRM_ERROR("cannot find chunk!\n");
return;
}
switch (type) {
case AMDGPU_MUX_OFFSET_TYPE_CONTROL:
chunk->cntl_offset = offset;
break;
case AMDGPU_MUX_OFFSET_TYPE_DE:
chunk->de_offset = offset;
break;
case AMDGPU_MUX_OFFSET_TYPE_CE:
chunk->ce_offset = offset;
break;
default:
DRM_ERROR("invalid type (%d)\n", type);
break;
}
}
void amdgpu_ring_mux_end_ib(struct amdgpu_ring_mux *mux, struct amdgpu_ring *ring)
{
struct amdgpu_mux_entry *e;
struct amdgpu_mux_chunk *chunk;
e = amdgpu_ring_mux_sw_entry(mux, ring);
if (!e) {
DRM_ERROR("cannot find entry!\n");
return;
}
chunk = list_last_entry(&e->list, struct amdgpu_mux_chunk, entry);
if (!chunk) {
DRM_ERROR("cannot find chunk!\n");
return;
}
chunk->end = ring->wptr;
chunk->sync_seq = READ_ONCE(ring->fence_drv.sync_seq);
scan_and_remove_signaled_chunk(mux, ring);
}
bool amdgpu_mcbp_handle_trailing_fence_irq(struct amdgpu_ring_mux *mux)
{
struct amdgpu_mux_entry *e;
struct amdgpu_ring *ring = NULL;
int i;
if (!mux->pending_trailing_fence_signaled)
return false;
if (mux->real_ring->trail_seq != le32_to_cpu(*mux->real_ring->trail_fence_cpu_addr))
return false;
for (i = 0; i < mux->num_ring_entries; i++) {
e = &mux->ring_entry[i];
if (e->ring->hw_prio <= AMDGPU_RING_PRIO_DEFAULT) {
ring = e->ring;
break;
}
}
if (!ring) {
DRM_ERROR("cannot find low priority ring\n");
return false;
}
amdgpu_fence_process(ring);
if (amdgpu_fence_count_emitted(ring) > 0) {
mux->s_resubmit = true;
mux->seqno_to_resubmit = ring->fence_drv.sync_seq;
amdgpu_ring_mux_schedule_resubmit(mux);
}
mux->pending_trailing_fence_signaled = false;
return true;
}