// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/exo/buffer.h"
#include <stdint.h>
#include <algorithm>
#include <cstddef>
#include <string_view>
#include <utility>
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/weak_ptr.h"
#include "base/not_fatal_until.h"
#include "base/task/single_thread_task_runner.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "base/trace_event/traced_value.h"
#include "build/build_config.h"
#include "components/exo/frame_sink_resource_manager.h"
#include "components/viz/common/gpu/context_lost_observer.h"
#include "components/viz/common/gpu/context_provider.h"
#include "components/viz/common/resources/resource_id.h"
#include "components/viz/common/resources/returned_resource.h"
#include "components/viz/common/resources/shared_image_format.h"
#include "components/viz/common/resources/shared_image_format_utils.h"
#include "gpu/GLES2/gl2extchromium.h"
#include "gpu/command_buffer/client/client_shared_image.h"
#include "gpu/command_buffer/client/context_support.h"
#include "gpu/command_buffer/client/gpu_memory_buffer_manager.h"
#include "gpu/command_buffer/client/raster_interface.h"
#include "gpu/command_buffer/client/shared_image_interface.h"
#include "gpu/command_buffer/common/mailbox.h"
#include "gpu/command_buffer/common/shared_image_usage.h"
#include "gpu/command_buffer/common/sync_token.h"
#include "gpu/ipc/common/gpu_memory_buffer_support.h"
#include "media/base/media_switches.h"
#include "ui/aura/env.h"
#include "ui/color/color_id.h"
#include "ui/compositor/compositor.h"
#include "ui/gfx/color_space.h"
#include "ui/gfx/gpu_fence_handle.h"
#include "ui/gfx/gpu_memory_buffer.h"
#if BUILDFLAG(USE_ARC_PROTECTED_MEDIA)
#include "base/files/scoped_file.h"
#include "base/posix/eintr_wrapper.h"
#endif // BUILDFLAG(USE_ARC_PROTECTED_MEDIA)
namespace exo {
namespace {
// The amount of time before we wait for release queries using
// GetQueryObjectuivEXT(GL_QUERY_RESULT_EXT).
const int kWaitForReleaseDelayMs = 500;
constexpr char kBufferInUse[] = "BufferInUse";
const unsigned kDefaultQueryType = GL_COMMANDS_COMPLETED_CHROMIUM;
const bool kDefaultUseZeroCopy = true;
const bool kDefaultIsOverlayCandidate = false;
const bool kDefaultYInvert = false;
const gfx::BufferFormat kDefaultBufferFormat = gfx::BufferFormat::RGBA_8888;
const gfx::Size kDefaultSize = gfx::Size(0, 0);
const gfx::BufferUsage kDefaultBufferUsage = gfx::BufferUsage::GPU_READ;
// Default usage in order to create a mappable shared image and get a
// GpuMemoryBufferHandle from it.
const gpu::SharedImageUsageSet kDefaultMappableSIUsage =
gpu::SHARED_IMAGE_USAGE_DISPLAY_READ;
// Gets the color type of |format| for creating bitmap. If it returns
// SkColorType::kUnknown_SkColorType, it means with this format, this buffer
// contents should not be used to create bitmap.
SkColorType GetColorTypeForBitmapCreation(gfx::BufferFormat format) {
switch (format) {
case gfx::BufferFormat::RGBA_8888:
return SkColorType::kRGBA_8888_SkColorType;
case gfx::BufferFormat::BGRA_8888:
return SkColorType::kBGRA_8888_SkColorType;
default:
// Don't create bitmap for other formats.
return SkColorType::kUnknown_SkColorType;
}
}
// Gets the shared image format equivalent of |buffer_format| used for creating
// shared image.
viz::SharedImageFormat GetSharedImageFormat(gfx::BufferFormat buffer_format) {
viz::SharedImageFormat format;
switch (buffer_format) {
case gfx::BufferFormat::BGRA_8888:
return viz::SinglePlaneFormat::kBGRA_8888;
case gfx::BufferFormat::R_8:
return viz::SinglePlaneFormat::kR_8;
case gfx::BufferFormat::R_16:
return viz::SinglePlaneFormat::kR_16;
case gfx::BufferFormat::RG_1616:
return viz::SinglePlaneFormat::kRG_1616;
case gfx::BufferFormat::RGBA_4444:
return viz::SinglePlaneFormat::kRGBA_4444;
case gfx::BufferFormat::RGBA_8888:
return viz::SinglePlaneFormat::kRGBA_8888;
case gfx::BufferFormat::RGBA_F16:
return viz::SinglePlaneFormat::kRGBA_F16;
case gfx::BufferFormat::BGR_565:
return viz::SinglePlaneFormat::kBGR_565;
case gfx::BufferFormat::RG_88:
return viz::SinglePlaneFormat::kRG_88;
case gfx::BufferFormat::RGBX_8888:
return viz::SinglePlaneFormat::kRGBX_8888;
case gfx::BufferFormat::BGRX_8888:
return viz::SinglePlaneFormat::kBGRX_8888;
case gfx::BufferFormat::RGBA_1010102:
return viz::SinglePlaneFormat::kRGBA_1010102;
case gfx::BufferFormat::BGRA_1010102:
return viz::SinglePlaneFormat::kBGRA_1010102;
case gfx::BufferFormat::YVU_420:
format = viz::MultiPlaneFormat::kYV12;
break;
case gfx::BufferFormat::YUV_420_BIPLANAR:
format = viz::MultiPlaneFormat::kNV12;
break;
case gfx::BufferFormat::YUVA_420_TRIPLANAR:
format = viz::MultiPlaneFormat::kNV12A;
break;
case gfx::BufferFormat::P010:
format = viz::MultiPlaneFormat::kP010;
break;
}
#if BUILDFLAG(IS_CHROMEOS)
// If format is true multiplanar format, we prefer external sampler on
// ChromeOS.
if (format.is_multi_plane()) {
format.SetPrefersExternalSampler();
}
#endif
return format;
}
// Helper to create ClientSharedImage.
gpu::SharedImageInterface* GetSharedImageInterface() {
ui::ContextFactory* context_factory =
aura::Env::GetInstance()->context_factory();
CHECK(context_factory);
// Note : This can fail if GPU acceleration has been disabled.
scoped_refptr<viz::RasterContextProvider> context_provider =
context_factory->SharedMainThreadRasterContextProvider();
if (!context_provider) {
DLOG(ERROR) << "Failed to acquire a context provider";
CHECK(context_provider);
return nullptr;
}
return context_provider->SharedImageInterface();
}
} // namespace
////////////////////////////////////////////////////////////////////////////////
// Buffer::Texture
// Encapsulates the state and logic needed to bind a buffer to a SharedImage.
class Buffer::Texture : public viz::ContextLostObserver {
public:
Texture(scoped_refptr<viz::RasterContextProvider> context_provider,
const gfx::Size& size,
gfx::ColorSpace color_space,
gpu::SyncToken& sync_token_out);
Texture(scoped_refptr<viz::RasterContextProvider> context_provider,
gfx::GpuMemoryBufferHandle* gpu_memory_buffer_handle,
const gfx::BufferFormat buffer_format,
const gfx::Size& size,
gfx::ColorSpace color_space,
unsigned query_type,
base::TimeDelta wait_for_release_time,
bool is_overlay_candidate,
gpu::SyncToken& sync_token_out);
Texture(const Texture&) = delete;
Texture& operator=(const Texture&) = delete;
~Texture() override;
// Overridden from viz::ContextLostObserver:
void OnContextLost() override;
// Returns true if the RasterInterface context has been lost.
bool IsLost();
// Allow texture to be reused after |sync_token| has passed and runs
// |callback|.
void Release(base::OnceCallback<void(gfx::GpuFenceHandle)> callback,
viz::ReturnedResource resource);
// Updates the contents referenced by |gpu_memory_buffer_handle_| returned by
// mailbox().
// Returns a sync token that can be used when accessing the SharedImage from a
// different context.
gpu::SyncToken UpdateSharedImage(
std::unique_ptr<gfx::GpuFence> acquire_fence);
// Releases the contents referenced by |mailbox_| after |sync_token| has
// passed and runs |callback| when completed.
void ReleaseSharedImage(
base::OnceCallback<void(gfx::GpuFenceHandle)> callback,
viz::ReturnedResource resource);
// Copy the contents of texture to |destination| and runs |callback| when
// completed. Returns a sync token that can be used when accessing texture
// from a different context.
gpu::SyncToken CopyTexImage(std::unique_ptr<gfx::GpuFence> acquire_fence,
Texture* destination,
base::OnceClosure callback);
// Returns the ClientSharedImage for this texture.
gpu::ClientSharedImage* shared_image() const { return shared_image_.get(); }
// Returns the mailbox for this texture.
gpu::Mailbox mailbox() const { return shared_image_->mailbox(); }
private:
void DestroyResources();
void ReleaseWhenQueryResultIsAvailable(base::OnceClosure callback);
void Released();
void ScheduleWaitForRelease(base::TimeDelta delay);
void WaitForRelease();
const void* GetBufferId() const;
// Note that the owning reference to this pointers is ::Buffer which can be
// destroyed before it when ::Buffer::Texture is destroyed via
// ::Buffer::Texture::ReleaseSharedImage(). This causes pointer to dangle. But
// this pointer is safe to dangle as we never access it during
// ::Buffer::Texture destructor and is also never accessed after the owning
// object ::Buffer is destroyed.
const raw_ptr<gfx::GpuMemoryBufferHandle, DisableDanglingPtrDetection>
gpu_memory_buffer_handle_;
const gfx::Size size_;
scoped_refptr<viz::RasterContextProvider> context_provider_;
const unsigned query_type_;
unsigned query_id_ = 0;
scoped_refptr<gpu::ClientSharedImage> shared_image_;
base::OnceClosure release_callback_;
const base::TimeDelta wait_for_release_delay_;
base::TimeTicks wait_for_release_time_;
bool wait_for_release_pending_ = false;
base::WeakPtrFactory<Texture> weak_ptr_factory_{this};
};
Buffer::Texture::Texture(
scoped_refptr<viz::RasterContextProvider> context_provider,
const gfx::Size& size,
gfx::ColorSpace color_space,
gpu::SyncToken& sync_token_out)
: gpu_memory_buffer_handle_(nullptr),
size_(size),
context_provider_(std::move(context_provider)),
query_type_(GL_COMMANDS_COMPLETED_CHROMIUM) {
gpu::SharedImageInterface* sii = context_provider_->SharedImageInterface();
// These SharedImages are used over the raster interface as both the source
// and destination of writes. Note that as the browser process raster
// interface uses RasterImplementation (and not RasterImplementationGLES) as
// its implementation, GLES2 usage is not needed.
const gpu::SharedImageUsageSet usage = gpu::SHARED_IMAGE_USAGE_RASTER_READ |
gpu::SHARED_IMAGE_USAGE_RASTER_WRITE |
gpu::SHARED_IMAGE_USAGE_DISPLAY_READ;
shared_image_ =
sii->CreateSharedImage({viz::SinglePlaneFormat::kRGBA_8888, size,
color_space, usage, gpu::kExoTextureLabelPrefix},
gpu::kNullSurfaceHandle);
CHECK(shared_image_);
DCHECK(!shared_image_->mailbox().IsZero());
gpu::raster::RasterInterface* ri = context_provider_->RasterInterface();
sync_token_out = sii->GenUnverifiedSyncToken();
ri->WaitSyncTokenCHROMIUM(sync_token_out.GetConstData());
// Provides a notification when |context_provider_| is lost.
context_provider_->AddObserver(this);
}
Buffer::Texture::Texture(
scoped_refptr<viz::RasterContextProvider> context_provider,
gfx::GpuMemoryBufferHandle* gpu_memory_buffer_handle,
const gfx::BufferFormat buffer_format,
const gfx::Size& size,
gfx::ColorSpace color_space,
unsigned query_type,
base::TimeDelta wait_for_release_delay,
bool is_overlay_candidate,
gpu::SyncToken& sync_token_out)
: gpu_memory_buffer_handle_(gpu_memory_buffer_handle),
size_(size),
context_provider_(std::move(context_provider)),
query_type_(query_type),
wait_for_release_delay_(wait_for_release_delay) {
CHECK(!gpu_memory_buffer_handle_->is_null());
gpu::SharedImageInterface* sii = context_provider_->SharedImageInterface();
// These SharedImages are used over the raster interface as both the source
// and destination of writes. Note that as the browser process raster
// interface uses RasterImplementation (and not RasterImplementationGLES) as
// its implementation, GLES2 usage is not needed.
gpu::SharedImageUsageSet usage = gpu::SHARED_IMAGE_USAGE_RASTER_READ |
gpu::SHARED_IMAGE_USAGE_RASTER_WRITE |
gpu::SHARED_IMAGE_USAGE_DISPLAY_READ;
if (is_overlay_candidate) {
usage |= gpu::SHARED_IMAGE_USAGE_SCANOUT;
}
shared_image_ =
sii->CreateSharedImage({GetSharedImageFormat(buffer_format), size_,
color_space, usage, gpu::kExoTextureLabelPrefix},
gpu_memory_buffer_handle_->Clone());
CHECK(shared_image_);
DCHECK(!shared_image_->mailbox().IsZero());
gpu::raster::RasterInterface* ri = context_provider_->RasterInterface();
sync_token_out = sii->GenUnverifiedSyncToken();
ri->WaitSyncTokenCHROMIUM(sync_token_out.GetConstData());
ri->GenQueriesEXT(1, &query_id_);
// Provides a notification when |context_provider_| is lost.
context_provider_->AddObserver(this);
}
Buffer::Texture::~Texture() {
DestroyResources();
if (context_provider_) {
context_provider_->RemoveObserver(this);
}
}
void Buffer::Texture::OnContextLost() {
DestroyResources();
context_provider_->RemoveObserver(this);
context_provider_.reset();
}
bool Buffer::Texture::IsLost() {
if (context_provider_) {
gpu::raster::RasterInterface* ri = context_provider_->RasterInterface();
return ri->GetGraphicsResetStatusKHR() != GL_NO_ERROR;
}
return true;
}
void Buffer::Texture::Release(
base::OnceCallback<void(gfx::GpuFenceHandle)> callback,
viz::ReturnedResource resource) {
if (context_provider_) {
// Only need to wait on the sync token if we don't have a release fence.
if (resource.sync_token.HasData() && resource.release_fence.is_null()) {
gpu::raster::RasterInterface* ri = context_provider_->RasterInterface();
ri->WaitSyncTokenCHROMIUM(resource.sync_token.GetConstData());
}
}
// Run callback as texture can be reused immediately after waiting for sync
// token.
std::move(callback).Run(std::move(resource.release_fence));
}
gpu::SyncToken Buffer::Texture::UpdateSharedImage(
std::unique_ptr<gfx::GpuFence> acquire_fence) {
gpu::SyncToken sync_token;
if (context_provider_) {
gpu::SharedImageInterface* sii = context_provider_->SharedImageInterface();
CHECK(shared_image_);
// UpdateSharedImage gets called only after |mailbox_| can be reused.
// A buffer can be reattached to a surface only after it has been returned
// to wayland clients. We return buffers to clients only after the query
// |query_type_| is available.
sii->UpdateSharedImage(gpu::SyncToken(), std::move(acquire_fence),
shared_image_->mailbox());
sync_token = sii->GenUnverifiedSyncToken();
TRACE_EVENT_ASYNC_STEP_INTO0("exo", kBufferInUse, GetBufferId(), "bound");
}
return sync_token;
}
void Buffer::Texture::ReleaseSharedImage(
base::OnceCallback<void(gfx::GpuFenceHandle)> callback,
viz::ReturnedResource resource) {
// Only need to wait on the sync token and query if we don't have a release
// fence.
if (context_provider_ && resource.release_fence.is_null()) {
gpu::raster::RasterInterface* ri = context_provider_->RasterInterface();
if (resource.sync_token.HasData()) {
ri->WaitSyncTokenCHROMIUM(resource.sync_token.GetConstData());
}
ri->BeginQueryEXT(query_type_, query_id_);
ri->EndQueryEXT(query_type_);
// Run callback when query result is available (i.e., when all operations
// on the shared image have completed and it's ready to be reused) if sync
// token has data and buffer has been used. If buffer was never used then
// run the callback immediately.
if (resource.sync_token.HasData()) {
ReleaseWhenQueryResultIsAvailable(base::BindOnce(
std::move(callback), /*release_fence=*/gfx::GpuFenceHandle()));
return;
}
}
std::move(callback).Run(std::move(resource.release_fence));
}
gpu::SyncToken Buffer::Texture::CopyTexImage(
std::unique_ptr<gfx::GpuFence> acquire_fence,
Texture* destination,
base::OnceClosure callback) {
gpu::SyncToken sync_token;
if (context_provider_) {
CHECK(shared_image_);
gpu::SharedImageInterface* sii = context_provider_->SharedImageInterface();
sii->UpdateSharedImage(gpu::SyncToken(), std::move(acquire_fence),
shared_image_->mailbox());
sync_token = sii->GenUnverifiedSyncToken();
gpu::raster::RasterInterface* ri = context_provider_->RasterInterface();
ri->WaitSyncTokenCHROMIUM(sync_token.GetConstData());
DCHECK_NE(query_id_, 0u);
ri->BeginQueryEXT(query_type_, query_id_);
// This function is used only to copy a Texture backed by a GMB to a Texture
// that is not backed by a GMB and has RGBA_8888 format. The texture target
// to use for RGBA_8888 on ChromeOS is always GL_TEXTURE_2D.
ri->CopySharedImage(shared_image_->mailbox(),
destination->shared_image_->mailbox(), GL_TEXTURE_2D, 0,
0, 0, 0, size_.width(), size_.height(),
/*unpack_flip_y=*/false,
/*unpack_premultiply_alpha=*/false);
ri->EndQueryEXT(query_type_);
// Run callback when query result is available.
ReleaseWhenQueryResultIsAvailable(std::move(callback));
// Create and return a sync token that can be used to ensure that the
// CopySharedImage call is processed before issuing any commands
// that will read from the target texture on a different context.
ri->GenUnverifiedSyncTokenCHROMIUM(sync_token.GetData());
}
return sync_token;
}
void Buffer::Texture::DestroyResources() {
if (context_provider_) {
if (query_id_) {
gpu::raster::RasterInterface* ri = context_provider_->RasterInterface();
ri->DeleteQueriesEXT(1, &query_id_);
query_id_ = 0;
}
gpu::SharedImageInterface* sii = context_provider_->SharedImageInterface();
sii->DestroySharedImage(gpu::SyncToken(), std::move(shared_image_));
}
}
void Buffer::Texture::ReleaseWhenQueryResultIsAvailable(
base::OnceClosure callback) {
DCHECK(context_provider_);
DCHECK(release_callback_.is_null());
release_callback_ = std::move(callback);
wait_for_release_time_ = base::TimeTicks::Now() + wait_for_release_delay_;
ScheduleWaitForRelease(wait_for_release_delay_);
TRACE_EVENT_ASYNC_STEP_INTO0("exo", kBufferInUse, GetBufferId(),
"pending_query");
context_provider_->ContextSupport()->SignalQuery(
query_id_, base::BindOnce(&Buffer::Texture::Released,
weak_ptr_factory_.GetWeakPtr()));
}
void Buffer::Texture::Released() {
if (!release_callback_.is_null()) {
std::move(release_callback_).Run();
}
}
void Buffer::Texture::ScheduleWaitForRelease(base::TimeDelta delay) {
if (wait_for_release_pending_) {
return;
}
wait_for_release_pending_ = true;
base::SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE,
base::BindOnce(&Buffer::Texture::WaitForRelease,
weak_ptr_factory_.GetWeakPtr()),
delay);
}
void Buffer::Texture::WaitForRelease() {
DCHECK(wait_for_release_pending_);
wait_for_release_pending_ = false;
if (release_callback_.is_null()) {
return;
}
base::TimeTicks current_time = base::TimeTicks::Now();
if (current_time < wait_for_release_time_) {
ScheduleWaitForRelease(wait_for_release_time_ - current_time);
return;
}
base::OnceClosure callback = std::move(release_callback_);
if (context_provider_) {
TRACE_EVENT0("exo", "Buffer::Texture::WaitForQueryResult");
// We need to wait for the result to be available. Getting the result of
// the query implies waiting for it to become available. The actual result
// is unimportant and also not well defined.
unsigned result = 0;
gpu::raster::RasterInterface* ri = context_provider_->RasterInterface();
ri->GetQueryObjectuivEXT(query_id_, GL_QUERY_RESULT_EXT, &result);
}
std::move(callback).Run();
}
const void* Buffer::Texture::GetBufferId() const {
return static_cast<const void*>(gpu_memory_buffer_handle_);
}
Buffer::BufferRelease::BufferRelease(
gfx::GpuFenceHandle release_fence,
std::unique_ptr<base::FileDescriptorWatcher::Controller> controller,
base::OnceClosure buffer_release_callback)
: release_fence(std::move(release_fence)),
controller(std::move(controller)),
buffer_release_callback(std::move(buffer_release_callback)) {}
Buffer::BufferRelease::~BufferRelease() = default;
Buffer::BufferRelease::BufferRelease(BufferRelease&&) = default;
Buffer::BufferRelease& Buffer::BufferRelease::operator=(BufferRelease&&) =
default;
////////////////////////////////////////////////////////////////////////////////
// Buffer, public:
Buffer::Buffer()
: Buffer(gfx::GpuMemoryBufferHandle(),
kDefaultBufferFormat,
kDefaultSize,
kDefaultBufferUsage,
kDefaultQueryType,
kDefaultUseZeroCopy,
kDefaultIsOverlayCandidate,
kDefaultYInvert) {}
Buffer::Buffer(gfx::GpuMemoryBufferHandle gpu_memory_buffer_handle,
gfx::BufferFormat buffer_format,
gfx::Size size,
gfx::BufferUsage buffer_usage,
unsigned query_type,
bool use_zero_copy,
bool is_overlay_candidate,
bool y_invert)
: gpu_memory_buffer_handle_(std::move(gpu_memory_buffer_handle)),
buffer_format_(buffer_format),
size_(size),
buffer_usage_(buffer_usage),
query_type_(query_type),
use_zero_copy_(use_zero_copy),
is_overlay_candidate_(is_overlay_candidate),
y_invert_(y_invert),
wait_for_release_delay_(base::Milliseconds(kWaitForReleaseDelayMs)) {}
Buffer::~Buffer() {}
// static
std::unique_ptr<Buffer> Buffer::CreateBufferFromGMBHandle(
gfx::GpuMemoryBufferHandle buffer_handle,
const gfx::Size& buffer_size,
gfx::BufferFormat buffer_format,
gfx::BufferUsage buffer_usage,
unsigned query_type,
bool use_zero_copy,
bool is_overlay_candidate,
bool y_invert) {
return base::WrapUnique(new Buffer(
std::move(buffer_handle), buffer_format, buffer_size, buffer_usage,
query_type, use_zero_copy, is_overlay_candidate, y_invert));
}
// static
std::unique_ptr<Buffer> Buffer::CreateBuffer(
gfx::Size buffer_size,
gfx::BufferFormat buffer_format,
gfx::BufferUsage buffer_usage,
std::string_view debug_label,
gpu::SurfaceHandle surface_handle,
base::WaitableEvent* shutdown_event,
bool is_overlay_candidate) {
scoped_refptr<gpu::ClientSharedImage> shared_image;
auto* sii = GetSharedImageInterface();
if (sii) {
// Note that we are creating this mappable shared image only to get a
// GMBHandle from it and use below to create ::Buffer.
// TODO(vikassoni) : Once MappableSI is fully launched
// and we remove legacy code paths, refactor ::Buffer and
// ::Buffer::Texture to use this MappableSI created below directly in
// ::Buffer::Texture instead of creating new SI in it.
// ::Buffer will keep a GMB handle as well as MappableSI when handles
// comes externally via ::CreateBufferFromGMBHandle whereas only
// MappableSI for ::CreateBuffer calls. ::Buffer also needs to handle
// context loss since its using a SI.
// Currently creating ::Buffer from MappableSI below and then using that
// ::Buffer to create ::Buffer::Texture does not work well as the ::Buffer
// does not implement ContextLostObserver like ::Buffer::Texture. Even if
// ::Buffer does implement ContextLostObserver and destroys the MappableSI
// correctly, it still needs to recreate it when contexts are recreated.
shared_image = sii->CreateSharedImage(
{GetSharedImageFormat(buffer_format), buffer_size, gfx::ColorSpace(),
kDefaultMappableSIUsage, "ExoBufferCreateBuffer"},
surface_handle, buffer_usage);
}
if (!shared_image) {
LOG(ERROR) << "Failed to create a mappable shared image.";
return nullptr;
}
std::unique_ptr<Buffer> buffer = base::WrapUnique(
new Buffer(shared_image->CloneGpuMemoryBufferHandle(), buffer_format,
buffer_size, buffer_usage, kDefaultQueryType,
kDefaultUseZeroCopy, is_overlay_candidate, kDefaultYInvert));
// Destroy the |shared_image| as it will no longer be used. Note that the
// underlying handle is already cloned above and will not be destroyed by
// destroying the |shared_image|.
sii->DestroySharedImage(gpu::SyncToken(), std::move(shared_image));
return buffer;
}
bool Buffer::ProduceTransferableResource(
FrameSinkResourceManager* resource_manager,
std::unique_ptr<gfx::GpuFence> acquire_fence,
bool secure_output_only,
viz::TransferableResource* resource,
gfx::ColorSpace color_space,
ProtectedNativePixmapQueryDelegate* protected_native_pixmap_query,
PerCommitExplicitReleaseCallback per_commit_explicit_release_callback) {
TRACE_EVENT1("exo", "Buffer::ProduceTransferableResource", "buffer_id",
GetBufferId());
DCHECK(attach_count_);
next_commit_id_++;
// If textures are lost, destroy them to ensure that we create new ones
// below.
if (contents_texture_ && contents_texture_->IsLost()) {
contents_texture_.reset();
}
if (texture_ && texture_->IsLost()) {
texture_.reset();
}
ui::ContextFactory* context_factory =
aura::Env::GetInstance()->context_factory();
// Note: This can fail if GPU acceleration has been disabled.
scoped_refptr<viz::RasterContextProvider> context_provider =
context_factory->SharedMainThreadRasterContextProvider();
if (!context_provider) {
DLOG(WARNING) << "Failed to acquire a context provider";
resource->id = viz::kInvalidResourceId;
resource->size = gfx::Size();
if (per_commit_explicit_release_callback) {
std::move(per_commit_explicit_release_callback)
.Run(/*release_fence=*/gfx::GpuFenceHandle());
}
return false;
}
const bool request_release_fence =
!per_commit_explicit_release_callback.is_null();
if (per_commit_explicit_release_callback) {
pending_explicit_releases_.emplace(
next_commit_id_, std::move(per_commit_explicit_release_callback));
}
resource->id = resource_manager->AllocateResourceId();
resource->format = viz::SinglePlaneFormat::kRGBA_8888;
resource->size = GetSize();
resource->resource_source =
viz::TransferableResource::ResourceSource::kExoBuffer;
// Create a new image texture for |gpu_memory_buffer_handle_| if one doesn't
// already exist. The contents of this buffer are copied to |texture| using a
// call to CopyTexImage.
if (!contents_texture_) {
contents_texture_ = std::make_unique<Texture>(
context_provider, &gpu_memory_buffer_handle_, buffer_format_, size_,
color_space, query_type_, wait_for_release_delay_,
is_overlay_candidate_, resource->mutable_sync_token());
}
Texture* contents_texture = contents_texture_.get();
if (release_contents_callback_.IsCancelled()) {
TRACE_EVENT_ASYNC_BEGIN1("exo", kBufferInUse, GetBufferId(), "buffer_id",
GetBufferId());
}
// Cancel pending contents release callback.
release_contents_callback_.Reset(
base::BindOnce(&Buffer::ReleaseContents, base::Unretained(this)));
#if BUILDFLAG(USE_ARC_PROTECTED_MEDIA)
// Check if this buffer needs HW protection. This can only happen if we
// require a secure output.
if (secure_output_only &&
protected_buffer_state_ == ProtectedBufferState::UNKNOWN &&
!gpu_memory_buffer_handle_.is_null() && protected_native_pixmap_query) {
gfx::GpuMemoryBufferHandle gmb_handle = gpu_memory_buffer_handle_.Clone();
if (!gmb_handle.native_pixmap_handle.planes.empty()) {
base::ScopedFD pixmap_handle(HANDLE_EINTR(
dup(gmb_handle.native_pixmap_handle.planes[0].fd.get())));
if (pixmap_handle.is_valid()) {
protected_buffer_state_ = ProtectedBufferState::QUERYING;
protected_native_pixmap_query->IsProtectedNativePixmapHandle(
std::move(pixmap_handle),
base::BindOnce(&Buffer::OnIsProtectedNativePixmapHandle,
AsWeakPtr()));
}
}
}
#endif // BUILDFLAG(USE_ARC_PROTECTED_MEDIA)
// Zero-copy means using the contents texture directly.
if (use_zero_copy_) {
// This binds the latest contents of this buffer to |contents_texture|.
// If there is no acquire fence there is no need to update the shared image.
// We can sync on the existing sync token if present. Examples of where this
// can happen is video, where there is no fence provided, or in
// raster/composite when the fence already signaled at this stage.
if (acquire_fence && !acquire_fence->GetGpuFenceHandle().is_null()) {
resource->set_sync_token(
contents_texture->UpdateSharedImage(std::move(acquire_fence)));
}
uint32_t texture_target =
contents_texture->shared_image()->GetTextureTarget();
resource->set_mailbox(contents_texture->mailbox());
resource->set_texture_target(texture_target);
resource->is_overlay_candidate = is_overlay_candidate_;
resource->format = GetSharedImageFormat(buffer_format_);
if (context_provider->ContextCapabilities().chromium_gpu_fence &&
request_release_fence) {
resource->synchronization_type =
viz::TransferableResource::SynchronizationType::kReleaseFence;
}
// The contents texture will be released when no longer used by the
// compositor.
resource_manager->SetResourceReleaseCallback(
resource->id,
base::BindOnce(&Buffer::Texture::ReleaseSharedImage,
base::Unretained(contents_texture),
base::BindOnce(&Buffer::ReleaseContentsTexture,
AsWeakPtr(), std::move(contents_texture_),
release_contents_callback_.callback(),
next_commit_id_)));
return true;
}
// Create a mailbox texture that we copy the buffer contents to.
if (!texture_) {
texture_ =
std::make_unique<Texture>(context_provider, GetSize(), color_space,
resource->mutable_sync_token());
}
Texture* texture = texture_.get();
// Copy the contents of |contents_texture| to |texture| and produce a
// texture mailbox from the result in |texture|. The contents texture will
// be released when copy has completed.
gpu::SyncToken sync_token = contents_texture->CopyTexImage(
std::move(acquire_fence), texture,
base::BindOnce(&Buffer::ReleaseContentsTexture, AsWeakPtr(),
std::move(contents_texture_),
release_contents_callback_.callback(), next_commit_id_,
/*release_fence=*/gfx::GpuFenceHandle()));
resource->set_mailbox(texture->mailbox());
resource->set_sync_token(sync_token);
resource->set_texture_target(GL_TEXTURE_2D);
resource->is_overlay_candidate = false;
// The mailbox texture will be released when no longer used by the
// compositor.
resource_manager->SetResourceReleaseCallback(
resource->id,
base::BindOnce(&Buffer::Texture::Release, base::Unretained(texture),
base::BindOnce(&Buffer::ReleaseTexture, AsWeakPtr(),
std::move(texture_))));
return true;
}
void Buffer::SkipLegacyRelease() {
legacy_release_skippable_ = true;
}
void Buffer::OnAttach() {
DLOG_IF(WARNING, attach_count_ && !legacy_release_skippable_)
<< "Reattaching a buffer that is already attached to another surface.";
TRACE_EVENT2("exo", "Buffer::OnAttach", "buffer_id", GetBufferId(), "count",
attach_count_);
++attach_count_;
}
void Buffer::OnDetach() {
DCHECK_GT(attach_count_, 0u);
TRACE_EVENT2("exo", "Buffer::OnAttach", "buffer_id", GetBufferId(), "count",
attach_count_);
--attach_count_;
// Release buffer if no longer attached to a surface and content has been
// released.
if (!attach_count_ && release_contents_callback_.IsCancelled()) {
Release();
}
}
gfx::Size Buffer::GetSize() const {
return size_;
}
gfx::BufferFormat Buffer::GetFormat() const {
return buffer_format_;
}
// TODO(vikassoni): Note that once MappableSI is fully landed, direct use of
// GMBs will go away and clients will end up using either GMBHandle or Mappable
// shared image. Below method will be updated accordingly.
const void* Buffer::GetBufferId() const {
return static_cast<const void*>(&gpu_memory_buffer_handle_);
}
SkColor4f Buffer::GetColor() const {
return SkColors::kBlack;
}
#if BUILDFLAG(USE_ARC_PROTECTED_MEDIA)
bool Buffer::NeedsHardwareProtection() {
// We don't indicate protection is needed in the UNKNOWN state because we have
// not seen a pixmap yet that could be protected.
return protected_buffer_state_ == ProtectedBufferState::PROTECTED ||
protected_buffer_state_ == ProtectedBufferState::QUERYING;
}
#endif // BUILDFLAG(USE_ARC_PROTECTED_MEDIA)
////////////////////////////////////////////////////////////////////////////////
// Buffer, private:
void Buffer::Release() {
TRACE_EVENT_ASYNC_END0("exo", kBufferInUse, GetBufferId());
// Run release callback to notify the client that buffer has been released.
if (!release_callback_.is_null() && !legacy_release_skippable_) {
release_callback_.Run();
}
}
void Buffer::ReleaseTexture(std::unique_ptr<Texture> texture,
gfx::GpuFenceHandle release_fence) {
// Buffer was composited - we should not receive a release fence.
DCHECK(release_fence.is_null());
texture_ = std::move(texture);
}
void Buffer::ReleaseContentsTexture(std::unique_ptr<Texture> texture,
base::OnceClosure callback,
uint64_t commit_id,
gfx::GpuFenceHandle release_fence) {
contents_texture_ = std::move(texture);
MaybeRunPerCommitRelease(commit_id, std::move(release_fence),
std::move(callback));
}
void Buffer::ReleaseContents() {
TRACE_EVENT1("exo", "Buffer::ReleaseContents", "buffer_id", GetBufferId());
// Cancel callback to indicate that buffer has been released.
release_contents_callback_.Cancel();
if (attach_count_) {
TRACE_EVENT_ASYNC_STEP_INTO0("exo", kBufferInUse, GetBufferId(),
"attached");
} else {
// Release buffer if not attached to surface.
Release();
}
}
void Buffer::MaybeRunPerCommitRelease(
uint64_t commit_id,
gfx::GpuFenceHandle release_fence,
base::OnceClosure buffer_release_callback) {
auto iter = pending_explicit_releases_.find(commit_id);
if (iter != pending_explicit_releases_.end()) {
std::move(iter->second).Run(release_fence.Clone());
pending_explicit_releases_.erase(iter);
}
// We are still required to send these wl_buffer.release events even if
// the client supports explicit synchronization.
if (!buffer_release_callback) {
return;
}
if (release_fence.is_null() || legacy_release_skippable_) {
std::move(buffer_release_callback).Run();
} else {
// Watching the release fence's fd results in a context switch to the I/O
// thread. That may steal thread time from other applications, which can
// do something useful during that time. Moreover, most of the time the
// fence can have already been signalled. Thus, only watch the fence is
// readable iff it hasn't been signalled yet.
base::TimeTicks ticks;
auto status =
gfx::GpuFence::GetStatusChangeTime(release_fence.Peek(), &ticks);
if (status == gfx::GpuFence::kSignaled) {
std::move(buffer_release_callback).Run();
return;
}
auto controller = base::FileDescriptorWatcher::WatchReadable(
release_fence.Peek(),
base::BindRepeating(&Buffer::FenceSignalled, AsWeakPtr(), commit_id));
buffer_releases_.emplace(
commit_id,
BufferRelease(std::move(release_fence), std::move(controller),
std::move(buffer_release_callback)));
}
}
void Buffer::FenceSignalled(uint64_t commit_id) {
auto iter = buffer_releases_.find(commit_id);
CHECK(iter != buffer_releases_.end(), base::NotFatalUntil::M130);
std::move(iter->second.buffer_release_callback).Run();
buffer_releases_.erase(iter);
}
SkBitmap Buffer::CreateBitmap() {
SkBitmap bitmap;
SkColorType color_type = GetColorTypeForBitmapCreation(GetFormat());
if (color_type == SkColorType::kUnknown_SkColorType) {
return bitmap;
}
auto* sii = GetSharedImageInterface();
if (gpu_memory_buffer_handle_.is_null() || !sii) {
return bitmap;
}
// We only need to create this shared image in order to Map the
// |gpu_memory_buffer_handle_| to cpu visible memory.
auto shared_image = sii->CreateSharedImage(
{GetSharedImageFormat(buffer_format_), size_, gfx::ColorSpace(),
kDefaultMappableSIUsage, "ExoBufferCreateBitmap"},
gpu::kNullSurfaceHandle, buffer_usage_,
gpu_memory_buffer_handle_.Clone());
auto mapping = shared_image->Map();
if (!mapping) {
LOG(ERROR) << "Failed to map MappableSI.";
return bitmap;
}
gfx::Size size = GetSize();
SkImageInfo image_info = SkImageInfo::Make(size.width(), size.height(),
color_type, kPremul_SkAlphaType);
SkPixmap pixmap =
SkPixmap(image_info, mapping->Memory(0), mapping->Stride(0));
bitmap.allocPixels(image_info);
bitmap.writePixels(pixmap);
bitmap.setImmutable();
mapping.reset();
// Destroy this shared image as we no longer need it.
sii->DestroySharedImage(gpu::SyncToken(), std::move(shared_image));
return bitmap;
}
#if BUILDFLAG(USE_ARC_PROTECTED_MEDIA)
void Buffer::OnIsProtectedNativePixmapHandle(bool is_protected) {
protected_buffer_state_ = is_protected ? ProtectedBufferState::PROTECTED
: ProtectedBufferState::UNPROTECTED;
}
#endif // BUILDFLAG(USE_ARC_PROTECTED_MEDIA)
base::WeakPtr<Buffer> Buffer::AsWeakPtr() {
return weak_ptr_factory_.GetWeakPtr();
}
SolidColorBuffer::SolidColorBuffer(const SkColor4f& color,
const gfx::Size& size)
: color_(color), size_(size) {
SkipLegacyRelease();
}
SolidColorBuffer::~SolidColorBuffer() = default;
bool SolidColorBuffer::ProduceTransferableResource(
FrameSinkResourceManager* resource_manager,
std::unique_ptr<gfx::GpuFence> acquire_fence,
bool secure_output_only,
viz::TransferableResource* resource,
gfx::ColorSpace color_space,
ProtectedNativePixmapQueryDelegate* protected_native_pixmap_query,
PerCommitExplicitReleaseCallback per_commit_explicit_release_callback) {
if (per_commit_explicit_release_callback) {
std::move(per_commit_explicit_release_callback)
.Run(/*release_fence=*/gfx::GpuFenceHandle());
}
return false;
}
SkColor4f SolidColorBuffer::GetColor() const {
return color_;
}
gfx::Size SolidColorBuffer::GetSize() const {
return size_;
}
base::WeakPtr<Buffer> SolidColorBuffer::AsWeakPtr() {
return weak_ptr_factory_.GetWeakPtr();
}
} // namespace exo