// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef I18N_PHONENUMBERS_BASE_BASICTYPES_H_ #define I18N_PHONENUMBERS_BASE_BASICTYPES_H_ #include <limits.h> // So we can set the bounds of our types #include <stddef.h> // For size_t #include <string.h> // for memcpy #if !defined(_WIN32) // stdint.h is part of C99 but MSVC doesn't have it. #include <stdint.h> // For intptr_t. #endif namespace i18n { namespace phonenumbers { #ifdef INT64_MAX // INT64_MAX is defined if C99 stdint.h is included; use the // native types if available. int8; int16; int32; int64; uint8; uint16; uint32; uint64; const uint8 kuint8max = …; const uint16 kuint16max = …; const uint32 kuint32max = …; const uint64 kuint64max = …; const int8 kint8min = …; const int8 kint8max = …; const int16 kint16min = …; const int16 kint16max = …; const int32 kint32min = …; const int32 kint32max = …; const int64 kint64min = …; const int64 kint64max = …; #else // !INT64_MAX typedef signed char int8; typedef short int16; // TODO: Remove these type guards. These are to avoid conflicts with // obsolete/protypes.h in the Gecko SDK. #ifndef _INT32 #define _INT32 typedef int int32; #endif // The NSPR system headers define 64-bit as |long| when possible. In order to // not have typedef mismatches, we do the same on LP64. #if __LP64__ typedef long int64; #else typedef long long int64; #endif // NOTE: unsigned types are DANGEROUS in loops and other arithmetical // places. Use the signed types unless your variable represents a bit // pattern (eg a hash value) or you really need the extra bit. Do NOT // use 'unsigned' to express "this value should always be positive"; // use assertions for this. typedef unsigned char uint8; typedef unsigned short uint16; // TODO: Remove these type guards. These are to avoid conflicts with // obsolete/protypes.h in the Gecko SDK. #ifndef _UINT32 #define _UINT32 typedef unsigned int uint32; #endif // See the comment above about NSPR and 64-bit. #if __LP64__ typedef unsigned long uint64; #else typedef unsigned long long uint64; #endif #endif // !INT64_MAX schar; // A type to represent a Unicode code-point value. As of Unicode 4.0, // such values require up to 21 bits. // (For type-checking on pointers, make this explicitly signed, // and it should always be the signed version of whatever int32 is.) char32; // A macro to disallow the copy constructor and operator= functions // This should be used in the private: declarations for a class #if !defined(DISALLOW_COPY_AND_ASSIGN) #define DISALLOW_COPY_AND_ASSIGN(TypeName) … #endif // The arraysize(arr) macro returns the # of elements in an array arr. // The expression is a compile-time constant, and therefore can be // used in defining new arrays, for example. If you use arraysize on // a pointer by mistake, you will get a compile-time error. // // One caveat is that arraysize() doesn't accept any array of an // anonymous type or a type defined inside a function. In these rare // cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below. This is // due to a limitation in C++'s template system. The limitation might // eventually be removed, but it hasn't happened yet. // This template function declaration is used in defining arraysize. // Note that the function doesn't need an implementation, as we only // use its type. template <typename T, size_t N> char (&ArraySizeHelper(T (&array)[N]))[N]; // That gcc wants both of these prototypes seems mysterious. VC, for // its part, can't decide which to use (another mystery). Matching of // template overloads: the final frontier. #ifndef _MSC_VER template <typename T, size_t N> char (&ArraySizeHelper(const T (&array)[N]))[N]; #endif #if !defined(arraysize) #define arraysize(array) … #endif // ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize, // but can be used on anonymous types or types defined inside // functions. It's less safe than arraysize as it accepts some // (although not all) pointers. Therefore, you should use arraysize // whenever possible. // // The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type // size_t. // // ARRAYSIZE_UNSAFE catches a few type errors. If you see a compiler error // // "warning: division by zero in ..." // // when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer. // You should only use ARRAYSIZE_UNSAFE on statically allocated arrays. // // The following comments are on the implementation details, and can // be ignored by the users. // // ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in // the array) and sizeof(*(arr)) (the # of bytes in one array // element). If the former is divisible by the latter, perhaps arr is // indeed an array, in which case the division result is the # of // elements in the array. Otherwise, arr cannot possibly be an array, // and we generate a compiler error to prevent the code from // compiling. // // Since the size of bool is implementation-defined, we need to cast // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final // result has type size_t. // // This macro is not perfect as it wrongfully accepts certain // pointers, namely where the pointer size is divisible by the pointee // size. Since all our code has to go through a 32-bit compiler, // where a pointer is 4 bytes, this means all pointers to a type whose // size is 3 or greater than 4 will be (righteously) rejected. #if !defined(ARRAYSIZE_UNSAFE) #define ARRAYSIZE_UNSAFE(a) … #endif // The COMPILE_ASSERT macro can be used to verify that a compile time // expression is true. For example, you could use it to verify the // size of a static array: // // COMPILE_ASSERT(ARRAYSIZE_UNSAFE(content_type_names) == CONTENT_NUM_TYPES, // content_type_names_incorrect_size); // // or to make sure a struct is smaller than a certain size: // // COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large); // // The second argument to the macro is the name of the variable. If // the expression is false, most compilers will issue a warning/error // containing the name of the variable. #if __cplusplus >= 201103L // Under C++11, just use static_assert. #define COMPILE_ASSERT(expr, msg) … #else template <bool> struct CompileAssert { }; // Annotate a variable indicating it's ok if the variable is not used. // (Typically used to silence a compiler warning when the assignment // is important for some other reason.) // Use like: // int x ALLOW_UNUSED = ...; #if defined(__GNUC__) #define ALLOW_UNUSED … #else #define ALLOW_UNUSED #endif #define COMPILE_ASSERT … // Implementation details of COMPILE_ASSERT: // // - COMPILE_ASSERT works by defining an array type that has -1 // elements (and thus is invalid) when the expression is false. // // - The simpler definition // // #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1] // // does not work, as gcc supports variable-length arrays whose sizes // are determined at run-time (this is gcc's extension and not part // of the C++ standard). As a result, gcc fails to reject the // following code with the simple definition: // // int foo; // COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is // // not a compile-time constant. // // - By using the type CompileAssert<(bool(expr))>, we ensures that // expr is a compile-time constant. (Template arguments must be // determined at compile-time.) // // - The outer parentheses in CompileAssert<(bool(expr))> are necessary // to work around a bug in gcc 3.4.4 and 4.0.1. If we had written // // CompileAssert<bool(expr)> // // instead, these compilers will refuse to compile // // COMPILE_ASSERT(5 > 0, some_message); // // (They seem to think the ">" in "5 > 0" marks the end of the // template argument list.) // // - The array size is (bool(expr) ? 1 : -1), instead of simply // // ((expr) ? 1 : -1). // // This is to avoid running into a bug in MS VC 7.1, which // causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1. #endif } // namespace phonenumbers } // namespace i18n #endif // I18N_PHONENUMBERS_BASE_BASICTYPES_H_