// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ash/wm/workspace/workspace_window_resizer.h"
#include <cmath>
#include <utility>
#include "ash/constants/ash_features.h"
#include "ash/metrics/pip_uma.h"
#include "ash/public/cpp/shell_window_ids.h"
#include "ash/public/cpp/window_properties.h"
#include "ash/root_window_controller.h"
#include "ash/screen_util.h"
#include "ash/session/session_controller_impl.h"
#include "ash/shell.h"
#include "ash/wm/default_window_resizer.h"
#include "ash/wm/desks/desks_util.h"
#include "ash/wm/drag_window_resizer.h"
#include "ash/wm/float/tablet_mode_float_window_resizer.h"
#include "ash/wm/overview/overview_controller.h"
#include "ash/wm/pip/pip_controller.h"
#include "ash/wm/pip/pip_window_resizer.h"
#include "ash/wm/splitview/split_view_utils.h"
#include "ash/wm/tile_group/window_splitter.h"
#include "ash/wm/toplevel_window_event_handler.h"
#include "ash/wm/window_animations.h"
#include "ash/wm/window_positioning_utils.h"
#include "ash/wm/window_state.h"
#include "ash/wm/window_util.h"
#include "ash/wm/wm_event.h"
#include "ash/wm/workspace/phantom_window_controller.h"
#include "base/containers/contains.h"
#include "base/functional/bind.h"
#include "base/memory/raw_ptr.h"
#include "base/metrics/histogram_macros.h"
#include "base/metrics/user_metrics.h"
#include "base/ranges/algorithm.h"
#include "chromeos/ui/base/app_types.h"
#include "chromeos/ui/base/window_properties.h"
#include "chromeos/ui/frame/caption_buttons/snap_controller.h"
#include "chromeos/utils/haptics_util.h"
#include "ui/aura/client/window_types.h"
#include "ui/aura/window.h"
#include "ui/aura/window_delegate.h"
#include "ui/base/class_property.h"
#include "ui/base/hit_test.h"
#include "ui/compositor/layer.h"
#include "ui/display/screen.h"
#include "ui/events/devices/haptic_touchpad_effects.h"
#include "ui/gfx/geometry/point_conversions.h"
#include "ui/gfx/geometry/transform.h"
#include "ui/wm/core/coordinate_conversion.h"
#include "ui/wm/core/cursor_manager.h"
#include "ui/wm/core/scoped_animation_disabler.h"
namespace ash {
namespace {
using ::chromeos::kFrameRestoreLookKey;
using ::chromeos::WindowStateType;
constexpr double kMinHorizVelocityForWindowSwipe = 1100;
constexpr double kMinVertVelocityForWindowMinimize = 1000;
// Snap region when dragging close to the edges. That is, as the window gets
// this close to an edge of the screen it snaps to the edge.
constexpr int kScreenEdgeInset = 8;
// Snapping distance used instead of kScreenEdgeInset when resizing a window
// using touchscreen.
constexpr int kScreenEdgeInsetForTouchDrag = 32;
// If an edge of the work area is at an edge of the display, then you can snap a
// window by dragging to a point within this far inward from that edge. This
// tolerance is helpful in cases where you can drag out of the display. For
// mouse dragging, you may be able to drag out of the display because there is a
// neighboring display. For touch dragging, you may be able to drag out of the
// display because the physical device has a border around the display. Either
// case makes it difficult to drag to the edge without this tolerance.
constexpr int kScreenEdgeInsetForSnappingSides = 32;
// Similar but for snapping to the top. It is less aggressive since users need
// to grab the caption and making it too aggressive will lead to more accidental
// snaps when trying to align windows' top edges to the top of the display.
constexpr int kScreenEdgeInsetForSnappingTop = 8;
// When dragging an attached window this is the min size we'll make sure is
// visible. In the vertical direction we take the max of this and that from
// the delegate.
constexpr int kMinOnscreenSize = 20;
// The amount of pixels that needs to be moved during a caption area drag from a
// snapped window before the window restores.
constexpr int kResizeRestoreDragThresholdDp = 5;
// The UMA histogram that records presentation time for tab dragging between
// windows in clamshell mode.
constexpr char kTabDraggingInClamshellModeHistogram[] =
"Ash.TabDrag.PresentationTime.ClamshellMode";
constexpr char kTabDraggingInClamshellModeMaxLatencyHistogram[] =
"Ash.TabDrag.PresentationTime.MaxLatency.ClamshellMode";
// Name of smoothness histograms of the cross fade animation that happens when
// dragging a maximized window to maximize or unmaximize. Note that for drag
// maximize, this only applies when the window's pre drag state is maximized.
// For dragging from normal state to maximize, we use the regular cross fade
// histogram as its not expected to perform differently. These are measured
// separately from the regular cross fade animation because they have a shorter
// duration and in the case of drag unmaximize, the window bounds are changing
// while animating.
constexpr char kDragUnmaximizeSmoothness[] =
"Ash.Window.AnimationSmoothness.CrossFade.DragUnmaximize";
constexpr char kDragMaximizeSmoothness[] =
"Ash.Window.AnimationSmoothness.CrossFade.DragMaximize";
// Duration of the cross fade animation used when dragging to unmaximize or
// dragging to snap maximize.
constexpr base::TimeDelta kCrossFadeDuration = base::Milliseconds(120);
// The amount of pixels that needs to be moved during a top screen drag to reset
// dwell time.
constexpr int kSnapDragDwellTimeResetThreshold = 8;
// Dwell time before snap to maximize. The countdown starts when window dragged
// into snap region.
constexpr base::TimeDelta kDwellTime = base::Milliseconds(400);
// Dwell time before turning snap top to snap to maximize. The countdown starts
// when window dragged into snap region.
constexpr base::TimeDelta kDwellLongTime = base::Milliseconds(1000);
// The min amount of vertical movement needed for to trigger a snap to
// maximize.
constexpr int kSnapTriggerVerticalMoveThreshold = 64;
// Current instance for use by the WorkspaceWindowResizerTest.
WorkspaceWindowResizer* instance = nullptr;
// Possible areas that can trigger windows snap and maximize.
enum class DragTriggerArea { kLeft, kRight, kBottom, kTop, kInvalid };
// Returns true if the window should stick to the edge.
bool ShouldStickToEdge(int distance_from_edge, int sticky_size) {
return distance_from_edge < sticky_size &&
distance_from_edge > -sticky_size * 2;
}
// Returns the coordinate along the secondary axis to snap to.
int CoordinateAlongSecondaryAxis(SecondaryMagnetismEdge edge,
int leading,
int trailing,
int none) {
switch (edge) {
case SECONDARY_MAGNETISM_EDGE_LEADING:
return leading;
case SECONDARY_MAGNETISM_EDGE_TRAILING:
return trailing;
case SECONDARY_MAGNETISM_EDGE_NONE:
return none;
}
NOTREACHED();
}
// Returns the origin for |src| when magnetically attaching to |attach_to| along
// the edges |edges|. |edges| is a bitmask of the MagnetismEdges.
gfx::Point OriginForMagneticAttach(const gfx::Rect& src,
const gfx::Rect& attach_to,
const MatchedEdge& edge) {
int x = 0, y = 0;
switch (edge.primary_edge) {
case MAGNETISM_EDGE_TOP:
y = attach_to.bottom();
break;
case MAGNETISM_EDGE_LEFT:
x = attach_to.right();
break;
case MAGNETISM_EDGE_BOTTOM:
y = attach_to.y() - src.height();
break;
case MAGNETISM_EDGE_RIGHT:
x = attach_to.x() - src.width();
break;
}
switch (edge.primary_edge) {
case MAGNETISM_EDGE_TOP:
case MAGNETISM_EDGE_BOTTOM:
x = CoordinateAlongSecondaryAxis(edge.secondary_edge, attach_to.x(),
attach_to.right() - src.width(),
src.x());
break;
case MAGNETISM_EDGE_LEFT:
case MAGNETISM_EDGE_RIGHT:
y = CoordinateAlongSecondaryAxis(edge.secondary_edge, attach_to.y(),
attach_to.bottom() - src.height(),
src.y());
break;
}
return gfx::Point(x, y);
}
// Returns the bounds for a magnetic attach when resizing. |src| is the bounds
// of window being resized, |attach_to| the bounds of the window to attach to
// and |edge| identifies the edge to attach to.
gfx::Rect BoundsForMagneticResizeAttach(const gfx::Rect& src,
const gfx::Rect& attach_to,
const MatchedEdge& edge) {
int x = src.x();
int y = src.y();
int w = src.width();
int h = src.height();
gfx::Point attach_origin(OriginForMagneticAttach(src, attach_to, edge));
switch (edge.primary_edge) {
case MAGNETISM_EDGE_LEFT:
x = attach_origin.x();
w = src.right() - x;
break;
case MAGNETISM_EDGE_RIGHT:
w += attach_origin.x() - src.x();
break;
case MAGNETISM_EDGE_TOP:
y = attach_origin.y();
h = src.bottom() - y;
break;
case MAGNETISM_EDGE_BOTTOM:
h += attach_origin.y() - src.y();
break;
}
switch (edge.primary_edge) {
case MAGNETISM_EDGE_LEFT:
case MAGNETISM_EDGE_RIGHT:
if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_LEADING) {
y = attach_origin.y();
h = src.bottom() - y;
} else if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_TRAILING) {
h += attach_origin.y() - src.y();
}
break;
case MAGNETISM_EDGE_TOP:
case MAGNETISM_EDGE_BOTTOM:
if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_LEADING) {
x = attach_origin.x();
w = src.right() - x;
} else if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_TRAILING) {
w += attach_origin.x() - src.x();
}
break;
}
return gfx::Rect(x, y, w, h);
}
// Converts a window component edge to the magnetic edge to snap to.
uint32_t WindowComponentToMagneticEdge(int window_component) {
switch (window_component) {
case HTTOPLEFT:
return MAGNETISM_EDGE_LEFT | MAGNETISM_EDGE_TOP;
case HTTOPRIGHT:
return MAGNETISM_EDGE_TOP | MAGNETISM_EDGE_RIGHT;
case HTBOTTOMLEFT:
return MAGNETISM_EDGE_LEFT | MAGNETISM_EDGE_BOTTOM;
case HTBOTTOMRIGHT:
return MAGNETISM_EDGE_RIGHT | MAGNETISM_EDGE_BOTTOM;
case HTTOP:
return MAGNETISM_EDGE_TOP;
case HTBOTTOM:
return MAGNETISM_EDGE_BOTTOM;
case HTRIGHT:
return MAGNETISM_EDGE_RIGHT;
case HTLEFT:
return MAGNETISM_EDGE_LEFT;
default:
break;
}
return 0;
}
// If |window| has a resize handle and |location_in_parent| occurs within it,
// records UMA for it.
void MaybeRecordResizeHandleUsage(aura::Window* window,
const gfx::PointF& location_in_parent) {
gfx::Rect* resize_bounds_in_pip =
window->GetProperty(kWindowPipResizeHandleBoundsKey);
if (!resize_bounds_in_pip) {
return;
}
gfx::Point point_in_pip = gfx::ToRoundedPoint(location_in_parent);
aura::Window::ConvertPointToTarget(window->parent(), window, &point_in_pip);
if (resize_bounds_in_pip->Contains(point_in_pip)) {
UMA_HISTOGRAM_ENUMERATION(ash::kAshPipEventsHistogramName,
ash::AshPipEvents::CHROME_RESIZE_HANDLE_RESIZE);
}
}
// Returns a WindowResizer if dragging |window| is allowed in tablet mode.
std::unique_ptr<WindowResizer> CreateWindowResizerForTabletMode(
aura::Window* window,
const gfx::PointF& point_in_parent,
int window_component,
wm::WindowMoveSource source) {
WindowState* window_state = WindowState::Get(window);
// Dragging floated windows in tablet mode is allowed.
// TODO(crbug.com/1338715): Investigate if we need to wrap the resizer in a
// DragWindowResizer.
if (window_state->IsFloated() && window_component == HTCAPTION) {
window_state->CreateDragDetails(point_in_parent, HTCAPTION, source);
return std::make_unique<TabletModeFloatWindowResizer>(window_state);
}
return nullptr;
}
// When dragging, drags events have to moved pass this threshold before the
// window bounds start changing.
int GetDraggingThreshold(const DragDetails& details) {
if (details.window_component != HTCAPTION) {
return 0;
}
WindowStateType state = details.initial_state_type;
#if DCHECK_IS_ON()
// Other state types either create a different window resizer, or none at all.
std::vector<WindowStateType> draggable_states = {
WindowStateType::kDefault, WindowStateType::kNormal,
WindowStateType::kPrimarySnapped, WindowStateType::kSecondarySnapped,
WindowStateType::kMaximized, WindowStateType::kFloated};
DCHECK(base::Contains(draggable_states, state));
#endif
// Snapped and maximized windows need to be dragged a certain amount before
// bounds start changing.
return chromeos::IsNormalWindowStateType(state)
? 0
: kResizeRestoreDragThresholdDp;
}
void ResetFrameRestoreLookKey(WindowState* window_state) {
aura::Window* window = window_state->window();
if (window->GetProperty(kFrameRestoreLookKey)) {
window->SetProperty(kFrameRestoreLookKey, false);
}
}
// Returns a work area that excludes area that can trigger snaps.
gfx::Rect GetNonSnapWorkArea(const display::Display& display,
bool is_horizontal) {
gfx::Rect area = display.work_area();
gfx::Insets insets;
// Add tolerance for snapping near each work area edge when there is no
// component reducing work area on that edge.
// 1. Add tolerance to maximize triggering area, which is also shared with
// top snap area for vertical snap.
if (area.y() == display.bounds().y()) {
insets.set_top(kScreenEdgeInsetForSnappingTop);
}
// 2. Add tolerance to left and right snap area for horizontal snap, or
// bottom snap area for vertical snap.
if (is_horizontal) {
// Without the left shelf, i.e. the left edge of work area aligns with that
// of the display, add snap area tolerance to the left edge. On contrary,
// users need to drag pass the right edge of the left shelf to trigger snap.
if (area.x() == display.bounds().x()) {
insets.set_left(kScreenEdgeInsetForSnappingSides);
}
if (area.right() == display.bounds().right()) {
insets.set_right(kScreenEdgeInsetForSnappingSides);
}
} else {
// Always add tolerance for bottom snapping work area regardless of whether
// there is any bottom component that alters work area or not to reduce
// long-distance dragging overhead.
insets.set_bottom(kScreenEdgeInsetForSnappingSides);
}
area.Inset(insets);
return area;
}
// Returns the drag area for snap and maximize that is activated by mouse
// pointing at |location_in_screen| given the |display| and its |orientation|.
// Possible drag area for landscape orientation are left, right, and top
// (maximize), while those for portrait orientation are top and bottom.
DragTriggerArea GetActiveDragAreaForSnapAndMaximize(
const gfx::PointF& location_in_screen,
const display::Display& display,
bool is_horizontal) {
const gfx::Rect non_snap_area = GetNonSnapWorkArea(display, is_horizontal);
// The drag area on one of the four sides of screen is activated for snap and
// maximize when |location_in_screen| is outside non-snap area. For example,
// if the location is far left beyond the left edge of |non_snap_area| of
// landscape display, the drag is in |DragTriggerArea::kLeft| snappable area.
if (is_horizontal) {
if (location_in_screen.x() <= non_snap_area.x()) {
return DragTriggerArea::kLeft;
}
if (location_in_screen.x() >= non_snap_area.right() - 1) {
return DragTriggerArea::kRight;
}
} else if (location_in_screen.y() >= non_snap_area.bottom() - 1) {
return DragTriggerArea::kBottom;
}
return location_in_screen.y() <= non_snap_area.y()
? DragTriggerArea::kTop
: DragTriggerArea::kInvalid;
}
// Returns the snap type based on the |location_in_screen|. In portrait snap,
// maximize happens only after holding snap top, so this function returns
// the initial snap top i.e. type |WorkspaceWindowResizer::SnapType::kPrimary|
// for primary portrait or |kSecondary| for secondary portrait. Then
// |dwell_countdown_timer_| will update to |kMaximize| maximize type once the
// time is out in `Drag()`.
WorkspaceWindowResizer::SnapType GetSnapType(
const display::Display& display,
const gfx::PointF& location_in_screen) {
const chromeos::OrientationType orientation =
GetSnapDisplayOrientation(display);
const bool is_horizontal = chromeos::IsLandscapeOrientation(orientation);
const DragTriggerArea drag_area = GetActiveDragAreaForSnapAndMaximize(
location_in_screen, display, is_horizontal);
// In snap horizontal orientation, i.e. no snap top, triggering top area only
// triggers maximize.
if (is_horizontal && drag_area == DragTriggerArea::kTop) {
return WorkspaceWindowResizer::SnapType::kMaximize;
}
switch (drag_area) {
case DragTriggerArea::kLeft:
DCHECK(is_horizontal);
return orientation == chromeos::OrientationType::kLandscapePrimary
? WorkspaceWindowResizer::SnapType::kPrimary
: WorkspaceWindowResizer::SnapType::kSecondary;
case DragTriggerArea::kRight:
DCHECK(is_horizontal);
return orientation == chromeos::OrientationType::kLandscapePrimary
? WorkspaceWindowResizer::SnapType::kSecondary
: WorkspaceWindowResizer::SnapType::kPrimary;
case DragTriggerArea::kTop:
DCHECK(!is_horizontal);
return orientation == chromeos::OrientationType::kPortraitPrimary
? WorkspaceWindowResizer::SnapType::kPrimary
: WorkspaceWindowResizer::SnapType::kSecondary;
case DragTriggerArea::kBottom:
DCHECK(!is_horizontal);
return orientation == chromeos::OrientationType::kPortraitPrimary
? WorkspaceWindowResizer::SnapType::kSecondary
: WorkspaceWindowResizer::SnapType::kPrimary;
case DragTriggerArea::kInvalid:
return WorkspaceWindowResizer::SnapType::kNone;
}
}
// If |maximize| is true, this is an animation to maximized bounds and an
// animation from maximized bounds otherwise. This is used to determine which
// metric to record.
void CrossFadeAnimation(aura::Window* window,
const gfx::Rect& target_bounds,
bool maximize) {
CrossFadeAnimationAnimateNewLayerOnly(
window, target_bounds, kCrossFadeDuration, gfx::Tween::LINEAR,
maximize ? kDragMaximizeSmoothness : kDragUnmaximizeSmoothness);
}
bool IsTransitionFromTopToMaximize(WorkspaceWindowResizer::SnapType from_type,
WorkspaceWindowResizer::SnapType to_type,
const display::Display& display) {
if (to_type != WorkspaceWindowResizer::SnapType::kMaximize) {
return false;
}
const chromeos::OrientationType orientation =
GetSnapDisplayOrientation(display);
if (chromeos::IsLandscapeOrientation(orientation)) {
return false;
}
const bool is_primary = chromeos::IsPrimaryOrientation(orientation);
return is_primary ? from_type == WorkspaceWindowResizer::SnapType::kPrimary
: from_type == WorkspaceWindowResizer::SnapType::kSecondary;
}
} // namespace
std::unique_ptr<WindowResizer> CreateWindowResizer(
aura::Window* window,
const gfx::PointF& point_in_parent,
int window_component,
wm::WindowMoveSource source) {
DCHECK(window);
WindowState* window_state = WindowState::Get(window);
DCHECK(window_state);
// A resizer already exists; don't create a new one.
if (window_state->drag_details()) {
return nullptr;
}
// When running in single app mode and open a resizable window or not in an
// active user session, we should not create window resizer.
// Note: a resizable window in single app mode means a kiosk
// troubleshooting tool window, it should be movable and resizable.
SessionControllerImpl* session_controller =
Shell::Get()->session_controller();
if ((session_controller->IsRunningInAppMode() &&
!window_state->CanResize()) ||
session_controller->GetSessionState() !=
session_manager::SessionState::ACTIVE) {
return nullptr;
}
if (window_state->IsPip()) {
if (Shell::Get()->pip_controller()->CanResizePip()) {
window_state->CreateDragDetails(point_in_parent, window_component,
source);
MaybeRecordResizeHandleUsage(window, point_in_parent);
return std::make_unique<PipWindowResizer>(window_state);
} else {
return nullptr;
}
}
if (display::Screen::GetScreen()->InTabletMode()) {
return CreateWindowResizerForTabletMode(window, point_in_parent,
window_component, source);
}
// No need to return a resizer when the window cannot get resized.
if (!window_state->CanResize() && window_component != HTCAPTION) {
return nullptr;
}
const bool maximized = window_state->IsMaximized();
if (!maximized && !window_state->IsNormalOrSnapped() &&
!window_state->IsFloated()) {
return nullptr;
}
// TODO(https://crbug.com/1084695): Disable dragging maximized ARC windows
// from the caption. This is because ARC does not currently handle setting
// bounds on a maximized window well.
if (maximized &&
window_state->window()->GetProperty(chromeos::kAppTypeKey) ==
chromeos::AppType::ARC_APP &&
window_component == HTCAPTION) {
return nullptr;
}
int bounds_change =
WindowResizer::GetBoundsChangeForWindowComponent(window_component);
if (bounds_change == WindowResizer::kBoundsChangeDirection_None) {
return nullptr;
}
window_state->CreateDragDetails(point_in_parent, window_component, source);
// TODO(varkha): The chaining of window resizers causes some of the logic
// to be repeated and the logic flow difficult to control. With some windows
// classes using reparenting during drag operations it becomes challenging to
// implement proper transition from one resizer to another during or at the
// end of the drag. This also causes http://crbug.com/247085.
// We should have a better way of doing this, perhaps by having a way of
// observing drags or having a generic drag window wrapper which informs a
// layout manager that a drag has started or stopped. It may be possible to
// refactor and eliminate chaining.
std::unique_ptr<WindowResizer> window_resizer;
const auto* parent = window->parent();
if (parent &&
// TODO(afakhry): Maybe use switchable containers?
(desks_util::IsDeskContainer(parent) ||
parent->GetId() == kShellWindowId_AlwaysOnTopContainer ||
parent->GetId() == kShellWindowId_FloatContainer)) {
window_resizer = WorkspaceWindowResizer::Create(window_state, {});
} else {
window_resizer = DefaultWindowResizer::Create(window_state);
}
return std::make_unique<DragWindowResizer>(std::move(window_resizer),
window_state);
}
WorkspaceWindowResizer* WorkspaceWindowResizer::GetInstanceForTest() {
return instance;
}
// Represents the width or height of a window with constraints on its minimum
// and maximum size. 0 represents a lack of a constraint.
class WindowSize {
public:
WindowSize(int size, int min, int max) : size_(size), min_(min), max_(max) {
// Grow the min/max bounds to include the starting size.
if (is_underflowing()) {
min_ = size_;
}
if (is_overflowing()) {
max_ = size_;
}
}
bool is_at_capacity(bool shrinking) const {
return size_ == (shrinking ? min_ : max_);
}
int size() const { return size_; }
bool has_min() const { return min_ != 0; }
bool has_max() const { return max_ != 0; }
bool is_valid() const { return !is_overflowing() && !is_underflowing(); }
bool is_overflowing() const { return has_max() && size_ > max_; }
bool is_underflowing() const { return has_min() && size_ < min_; }
// Add |amount| to this WindowSize not exceeding min or max size constraints.
// Returns by how much |size_| + |amount| exceeds the min/max constraints.
int Add(int amount) {
DCHECK(is_valid());
int new_value = size_ + amount;
if (has_min() && new_value < min_) {
size_ = min_;
return new_value - min_;
}
if (has_max() && new_value > max_) {
size_ = max_;
return new_value - max_;
}
size_ = new_value;
return 0;
}
private:
int size_;
int min_;
int max_;
};
constexpr int WorkspaceWindowResizer::kMinOnscreenHeight;
WorkspaceWindowResizer::~WorkspaceWindowResizer() {
if (did_lock_cursor_) {
Shell::Get()->cursor_manager()->UnlockCursor();
}
if (instance == this) {
instance = nullptr;
}
}
// static
std::unique_ptr<WorkspaceWindowResizer> WorkspaceWindowResizer::Create(
WindowState* window_state,
const std::vector<raw_ptr<aura::Window, VectorExperimental>>&
attached_windows) {
return base::WrapUnique(
new WorkspaceWindowResizer(window_state, attached_windows));
}
void WorkspaceWindowResizer::Drag(const gfx::PointF& location_in_parent,
int event_flags) {
// For snapped or maximized windows, do not start resizing or restoring the
// window until a certain threshold has passed.
if (!did_move_or_resize_) {
if ((location_in_parent - details().initial_location_in_parent).Length() <
GetDraggingThreshold(details())) {
return;
}
}
gfx::PointF location_in_screen = location_in_parent;
wm::ConvertPointToScreen(GetTarget()->parent(), &location_in_screen);
last_location_in_screen_ = location_in_screen;
int sticky_size;
if (event_flags & ui::EF_CONTROL_DOWN) {
sticky_size = 0;
} else if ((details().bounds_change & kBoundsChange_Resizes) &&
details().source == wm::WINDOW_MOVE_SOURCE_TOUCH) {
sticky_size = kScreenEdgeInsetForTouchDrag;
} else {
sticky_size = kScreenEdgeInset;
}
// |bounds| is in |GetTarget()->parent()|'s coordinates.
gfx::Rect bounds = CalculateBoundsForDrag(location_in_parent);
AdjustBoundsForMainWindow(sticky_size, &bounds);
if (bounds != GetTarget()->bounds()) {
if (!did_move_or_resize_) {
if (!details().restore_bounds_in_parent.IsEmpty()) {
window_state()->ClearRestoreBounds();
if (details().window_component == HTCAPTION) {
if (window_state()->IsMaximized()) {
// Update the maximized window so that it looks like it has been
// restored (i.e. update the caption buttons and height of the
// browser frame).
// TODO(http://crbug.com/1200599): Speculative, remove if not fixed.
// Change window property kFrameRestoreLookKey or window bounds may
// cause the window being destroyed during the drag and return early
// if that's the case.
base::WeakPtr<WorkspaceWindowResizer> resizer(
weak_ptr_factory_.GetWeakPtr());
window_state()->window()->SetProperty(kFrameRestoreLookKey, true);
if (!resizer) {
return;
}
CrossFadeAnimation(window_state()->window(), bounds,
/*maximize=*/false);
if (!resizer) {
return;
}
base::RecordAction(
base::UserMetricsAction("WindowDrag_Unmaximize"));
} else if (window_state()->IsSnapped()) {
base::RecordAction(base::UserMetricsAction("WindowDrag_Unsnap"));
}
}
}
RestackWindows();
}
did_move_or_resize_ = true;
}
if (!attached_windows_.empty()) {
LayoutAttachedWindows(&bounds);
}
if (aura::Window* window = GetTarget(); bounds != window->bounds()) {
// SetBounds needs to be called to update the layout which affects where the
// phantom window is drawn. Keep track if the window was destroyed during
// the drag and quit early if so.
base::WeakPtr<WorkspaceWindowResizer> resizer(
weak_ptr_factory_.GetWeakPtr());
// If a window is snapped, then starts drag to unsnap, at this point its
// state type hasn't been updated yet. Suppress from force updating the snap
// ratio which would be using the restore or normal bounds.
auto* window_state = WindowState::Get(window);
window_state->set_can_update_snap_ratio(false);
SetBoundsDuringResize(bounds);
window_state->set_can_update_snap_ratio(true);
if (!resizer) {
return;
}
}
if (tab_dragging_recorder_) {
// The recorder only works with a single ui::Compositor. ui::Compositor is
// per display so the recorder does not work correctly across different
// displays. Thus, we give up tab dragging latency data collection if the
// drag touches a different display, i.e. not inside the current parent's
// bounds.
if (!gfx::Rect(GetTarget()->parent()->bounds().size())
.Contains(gfx::ToRoundedPoint(location_in_parent))) {
tab_dragging_recorder_.reset();
} else {
tab_dragging_recorder_->RequestNext();
}
}
// In case of non-dragging action such as resizing, we do not want to
// continue performing any snap or maximize logic. Otherwise, resize top edge
// to the top of display will fire maximize |dwell_countdown_timer_|
// (crbug.com/1251859).
if (details().window_component != HTCAPTION) {
return;
}
if (!can_snap_to_maximize_) {
gfx::PointF initial_location_in_screen =
details().initial_location_in_parent;
wm::ConvertPointToScreen(GetTarget()->parent(),
&initial_location_in_screen);
// When repositioning windows across the top of the screen, only trigger a
// snap when there is significant vertical movement.
can_snap_to_maximize_ =
std::abs(initial_location_in_screen.y() - location_in_screen.y()) >
kSnapTriggerVerticalMoveThreshold;
}
display::Display display =
display::Screen::GetScreen()->GetDisplayNearestPoint(
gfx::ToRoundedPoint(location_in_screen));
const SnapType snap_type = GetSnapType(display, location_in_screen);
// Start dwell countdown if move window to the top of screen.
if (IsSnapTopOrMaximize(snap_type, display)) {
if (can_snap_to_maximize_) {
const bool drag_passed_threshold =
dwell_location_in_screen_.has_value() &&
(location_in_screen - dwell_location_in_screen_.value()).Length() >
kSnapDragDwellTimeResetThreshold;
// If vertical snap state is enabled, update phantom window for top/bottom
// snap before setting a timer for maximize phantom to show up.
if (!snap_phantom_window_controller_ &&
snap_type != SnapType::kMaximize) {
UpdateSnapPhantomWindow(snap_type, display);
}
// Start maximize phantom window dwell time if it is not already running
// or restart timer if user moves the window significantly.
if (!dwell_countdown_timer_.IsRunning() || drag_passed_threshold) {
// Use |kDwellLongTime| when snap top phantom window is shown first
// before it turns into maximize phantom window.
dwell_countdown_timer_.Start(
FROM_HERE,
snap_type != SnapType::kMaximize ? kDwellLongTime : kDwellTime,
base::BindOnce(&WorkspaceWindowResizer::UpdateSnapPhantomWindow,
weak_ptr_factory_.GetWeakPtr(), SnapType::kMaximize,
display));
// Cancel maximization if drag passed threshold.
// Window can still be maximized in next dwell cycle if stays at top of
// display.
if (drag_passed_threshold) {
snap_type_ = SnapType::kNone;
snap_phantom_window_controller_.reset();
}
}
}
dwell_location_in_screen_ = location_in_screen;
} else {
UpdateSnapPhantomWindow(snap_type, display);
if (dwell_countdown_timer_.IsRunning()) {
dwell_countdown_timer_.Stop();
}
dwell_location_in_screen_.reset();
}
if (window_splitter_) {
// Still need to call this when another snap type takes precedence, so that
// the window splitter can remove its own preview if showing.
window_splitter_->UpdateDrag(location_in_screen,
/*can_split=*/snap_type == SnapType::kNone);
}
}
void WorkspaceWindowResizer::CompleteDrag() {
tab_dragging_recorder_.reset();
window_state()->OnCompleteDrag(last_location_in_screen_);
EndDragForAttachedWindows(/*revert_drag=*/false);
if (!did_move_or_resize_) {
return;
}
ResetFrameRestoreLookKey(window_state());
window_state()->SetBoundsChangedByUser(true);
snap_phantom_window_controller_.reset();
// If the window's state type changed over the course of the drag do not snap
// the window. This happens when the user minimizes or maximizes the window
// using a keyboard shortcut while dragging it.
if (window_state()->GetStateType() != details().initial_state_type) {
return;
}
// Update window state if the window has been snapped.
if (snap_type_ != SnapType::kNone) {
if (!window_state()->HasRestoreBounds()) {
// Use `restore_bounds_for_gesture_` for touch dragging which is inside
// parent's bounds and would not put window to different display.
gfx::Rect bounds = details().source == wm::WINDOW_MOVE_SOURCE_TOUCH
? restore_bounds_for_gesture_
: details().restore_bounds_in_parent.IsEmpty()
? details().initial_bounds_in_parent
: details().restore_bounds_in_parent;
window_state()->SetRestoreBoundsInParent(bounds);
}
// TODO(oshima): Add event source type to WMEvent and move
// metrics recording inside WindowState::OnWMEvent.
// Use the target auto-snap ratio.
WMEventType type;
aura::Window* window = window_state()->window();
switch (snap_type_) {
case SnapType::kPrimary: {
base::RecordAction(base::UserMetricsAction("WindowDrag_MaximizeLeft"));
const WindowSnapWMEvent snap_primary_event(
WM_EVENT_SNAP_PRIMARY,
GetAutoSnapRatio(window, window->GetRootWindow(),
SnapViewType::kPrimary),
WindowSnapActionSource::kDragWindowToEdgeToSnap);
window_state()->OnWMEvent(&snap_primary_event);
return;
}
case SnapType::kSecondary: {
base::RecordAction(base::UserMetricsAction("WindowDrag_MaximizeRight"));
const WindowSnapWMEvent snap_secondary_event(
WM_EVENT_SNAP_SECONDARY,
GetAutoSnapRatio(window, window->GetRootWindow(),
SnapViewType::kSecondary),
WindowSnapActionSource::kDragWindowToEdgeToSnap);
window_state()->OnWMEvent(&snap_secondary_event);
return;
}
case SnapType::kMaximize:
type = WM_EVENT_MAXIMIZE;
base::RecordAction(base::UserMetricsAction("WindowDrag_Maximize"));
// This can happen when a user drags a maximized window from the
// caption, and then later tries to maximize it by snapping. Since the
// window is still maximized, telling window state to maximize will be a
// no-op, so reset the bounds manually here.
if (window_state()->IsMaximized()) {
CrossFadeAnimation(
window, screen_util::GetMaximizedWindowBoundsInParent(window),
/*maximize=*/true);
}
window_state()->TrackDragToMaximizeBehavior();
break;
default:
NOTREACHED();
}
const WMEvent event(type);
window_state()->OnWMEvent(&event);
// If the window has been snapped or maximized we are done here.
return;
}
// Keep the window snapped if the user resizes the window such that the
// window has valid bounds for a snapped window. Always unsnap the window
// if the user dragged the window via the caption area because doing this
// is slightly less confusing.
if (window_state()->IsSnapped()) {
window_state()->UpdateSnapRatio();
if (details().window_component == HTCAPTION ||
!AreBoundsValidSnappedBounds(GetTarget())) {
// Set the window to WindowStateType::kNormal but keep the
// window at the bounds that the user has moved/resized the
// window to.
window_state()->SaveCurrentBoundsForRestore();
// Since we saved the current bounds to the restore bounds, the restore
// animation will use the current bounds as the target bounds, so we can
// disable the animation here.
wm::ScopedAnimationDisabler disabler(window_state()->window());
window_state()->Restore();
}
return;
}
// Maximized to normal. State doesn't change during a drag so set the
// window to normal state here.
if (window_state()->IsMaximized()) {
DCHECK_EQ(HTCAPTION, details().window_component);
// Reaching here the only running animation should be the drag to
// unmaximize animation. Stop animating so that animations that might come
// after because of a gesture swipe or fling look smoother.
window_state()->window()->layer()->GetAnimator()->StopAnimating();
window_state()->SaveCurrentBoundsForRestore();
// Since we saved the current bounds to the restore bounds, the restore
// animation will use the current bounds as the target bounds, so we can
// disable the animation here.
wm::ScopedAnimationDisabler disabler(window_state()->window());
// Set the maximized window to normal state since it's being resized/dragged
// by the user now.
const WMEvent event(WM_EVENT_NORMAL);
window_state()->OnWMEvent(&event);
return;
}
DCHECK(window_state()->IsNormalStateType() || window_state()->IsFloated());
// The window was normal and stays normal. This is a user
// resize/drag and so the current bounds should be maintained, clearing
// any prior restore bounds.
window_state()->ClearRestoreBounds();
if (window_splitter_) {
window_splitter_->CompleteDrag(last_location_in_screen_);
}
}
void WorkspaceWindowResizer::RevertDrag() {
tab_dragging_recorder_.reset();
window_state()->OnRevertDrag(last_location_in_screen_);
EndDragForAttachedWindows(/*revert_drag=*/true);
window_state()->SetBoundsChangedByUser(initial_bounds_changed_by_user_);
snap_phantom_window_controller_.reset();
if (!did_move_or_resize_) {
return;
}
ResetFrameRestoreLookKey(window_state());
GetTarget()->SetBounds(details().initial_bounds_in_parent);
if (!details().restore_bounds_in_parent.IsEmpty()) {
window_state()->SetRestoreBoundsInParent(
details().restore_bounds_in_parent);
}
if (details().window_component == HTRIGHT) {
int last_x = details().initial_bounds_in_parent.right();
for (size_t i = 0; i < attached_windows_.size(); ++i) {
gfx::Rect bounds(attached_windows_[i]->bounds());
bounds.set_x(last_x);
bounds.set_width(initial_size_[i]);
attached_windows_[i]->SetBounds(bounds);
last_x = attached_windows_[i]->bounds().right();
}
} else {
int last_y = details().initial_bounds_in_parent.bottom();
for (size_t i = 0; i < attached_windows_.size(); ++i) {
gfx::Rect bounds(attached_windows_[i]->bounds());
bounds.set_y(last_y);
bounds.set_height(initial_size_[i]);
attached_windows_[i]->SetBounds(bounds);
last_y = attached_windows_[i]->bounds().bottom();
}
}
if (window_splitter_) {
window_splitter_->Disengage();
}
}
void WorkspaceWindowResizer::FlingOrSwipe(ui::GestureEvent* event) {
if (event->type() != ui::EventType::kScrollFlingStart &&
event->type() != ui::EventType::kGestureSwipe) {
return;
}
if (event->type() == ui::EventType::kScrollFlingStart) {
CompleteDrag();
if (details().bounds_change != WindowResizer::kBoundsChange_Repositions ||
!WindowState::Get(GetTarget())->IsNormalOrSnapped()) {
return;
}
if (event->details().velocity_y() > kMinVertVelocityForWindowMinimize) {
SetWindowStateTypeFromGesture(GetTarget(), WindowStateType::kMinimized);
} else if (event->details().velocity_y() <
-kMinVertVelocityForWindowMinimize) {
SetWindowStateTypeFromGesture(GetTarget(), WindowStateType::kMaximized);
} else if (event->details().velocity_x() >
kMinHorizVelocityForWindowSwipe) {
SetWindowStateTypeFromGesture(GetTarget(),
WindowStateType::kSecondarySnapped);
} else if (event->details().velocity_x() <
-kMinHorizVelocityForWindowSwipe) {
SetWindowStateTypeFromGesture(GetTarget(),
WindowStateType::kPrimarySnapped);
}
} else {
DCHECK_EQ(event->type(), ui::EventType::kGestureSwipe);
DCHECK_GT(event->details().touch_points(), 0);
if (event->details().touch_points() == 1) {
return;
}
if (!WindowState::Get(GetTarget())->IsNormalOrSnapped()) {
return;
}
CompleteDrag();
if (event->details().swipe_down()) {
SetWindowStateTypeFromGesture(GetTarget(), WindowStateType::kMinimized);
} else if (event->details().swipe_up()) {
SetWindowStateTypeFromGesture(GetTarget(), WindowStateType::kMaximized);
} else if (event->details().swipe_right()) {
SetWindowStateTypeFromGesture(GetTarget(),
WindowStateType::kSecondarySnapped);
} else {
SetWindowStateTypeFromGesture(GetTarget(),
WindowStateType::kPrimarySnapped);
}
}
event->StopPropagation();
}
WorkspaceWindowResizer::WorkspaceWindowResizer(
WindowState* window_state,
const std::vector<raw_ptr<aura::Window, VectorExperimental>>&
attached_windows)
: WindowResizer(window_state),
attached_windows_(attached_windows),
initial_bounds_changed_by_user_(window_state_->bounds_changed_by_user()) {
DCHECK(details().is_resizable);
// A mousemove should still show the cursor even if the window is
// being moved or resized with touch, so do not lock the cursor.
// If the window state is controlled by a client, which may set the
// cursor by itself, don't lock the cursor.
if (details().source != wm::WINDOW_MOVE_SOURCE_TOUCH &&
!window_state->allow_set_bounds_direct()) {
Shell::Get()->cursor_manager()->LockCursor();
did_lock_cursor_ = true;
}
// Only support attaching to the right/bottom.
DCHECK(attached_windows_.empty() || (details().window_component == HTRIGHT ||
details().window_component == HTBOTTOM));
// TODO: figure out how to deal with window going off the edge.
// Calculate sizes so that we can maintain the ratios if we need to resize.
for (size_t i = 0; i < attached_windows_.size(); ++i) {
gfx::Size min(attached_windows_[i]->delegate()
? attached_windows_[i]->delegate()->GetMinimumSize()
: gfx::Size());
int initial_size = PrimaryAxisSize(attached_windows_[i]->bounds().size());
initial_size_.push_back(initial_size);
// If current size is smaller than the min, use the current size as the min.
// This way we don't snap on resize.
int min_size = std::min(initial_size,
std::max(PrimaryAxisSize(min), kMinOnscreenSize));
total_min_ += min_size;
total_initial_size_ += initial_size;
}
instance = this;
// |restore_bounds_for_gesture_| will be set as the restore bounds if a window
// gets flinged or swiped.
if (details().restore_bounds_in_parent.IsEmpty()) {
// Use |bounds()| instead of |GetTargetBounds()| because that's the position
// a user captured the window.
restore_bounds_for_gesture_ = window_state->window()->bounds();
} else {
restore_bounds_for_gesture_ = details().restore_bounds_in_parent;
}
// Ensures |restore_bounds_for_gesture_| touches parent's local bounds so
// that fling maximize does not move the window to a different display
// and clear gesture states. See https://crbug.com/1162541.
const gfx::Rect parent_local_bounds(
window_state->window()->parent()->bounds().size());
if (!parent_local_bounds.Intersects(restore_bounds_for_gesture_)) {
restore_bounds_for_gesture_.AdjustToFit(parent_local_bounds);
}
if (features::IsWindowSplittingEnabled()) {
window_splitter_ = std::make_unique<WindowSplitter>(window_state->window());
}
std::unique_ptr<ash::PresentationTimeRecorder> recorder =
window_state->OnDragStarted(details().window_component);
if (recorder) {
SetPresentationTimeRecorder(std::move(recorder));
} else {
// Default to use compositor based recorder.
SetPresentationTimeRecorder(
PresentationTimeRecorder::CreateCompositorRecorder(
GetTarget(), "Ash.InteractiveWindowResize.TimeToPresent",
"Ash.InteractiveWindowResize.TimeToPresent.MaxLatency"));
}
StartDragForAttachedWindows();
if (window_util::IsDraggingTabs(window_state->window())) {
tab_dragging_recorder_ = CreatePresentationTimeHistogramRecorder(
GetTarget()->layer()->GetCompositor(),
kTabDraggingInClamshellModeHistogram,
kTabDraggingInClamshellModeMaxLatencyHistogram);
}
}
void WorkspaceWindowResizer::LayoutAttachedWindows(gfx::Rect* bounds) {
gfx::Rect work_area(
screen_util::GetDisplayWorkAreaBoundsInParent(GetTarget()));
int initial_size = PrimaryAxisSize(details().initial_bounds_in_parent.size());
int current_size = PrimaryAxisSize(bounds->size());
int start = PrimaryAxisCoordinate(bounds->right(), bounds->bottom());
int end = PrimaryAxisCoordinate(work_area.right(), work_area.bottom());
int delta = current_size - initial_size;
int available_size = end - start;
std::vector<int> sizes;
int leftovers = CalculateAttachedSizes(delta, available_size, &sizes);
// leftovers > 0 means that the attached windows can't grow to compensate for
// the shrinkage of the main window. This line causes the attached windows to
// be moved so they are still flush against the main window, rather than the
// main window being prevented from shrinking.
leftovers = std::min(0, leftovers);
// Reallocate any leftover pixels back into the main window. This is
// necessary when, for example, the main window shrinks, but none of the
// attached windows can grow without exceeding their max size constraints.
// Adding the pixels back to the main window effectively prevents the main
// window from resizing too far.
if (details().window_component == HTRIGHT) {
bounds->set_width(bounds->width() + leftovers);
} else {
bounds->set_height(bounds->height() + leftovers);
}
DCHECK_EQ(attached_windows_.size(), sizes.size());
int last = PrimaryAxisCoordinate(bounds->right(), bounds->bottom());
for (size_t i = 0; i < attached_windows_.size(); ++i) {
gfx::Rect attached_bounds(attached_windows_[i]->bounds());
if (details().window_component == HTRIGHT) {
attached_bounds.set_x(last);
attached_bounds.set_width(sizes[i]);
} else {
attached_bounds.set_y(last);
attached_bounds.set_height(sizes[i]);
}
attached_windows_[i]->SetBounds(attached_bounds);
last += sizes[i];
}
}
int WorkspaceWindowResizer::CalculateAttachedSizes(
int delta,
int available_size,
std::vector<int>* sizes) const {
std::vector<WindowSize> window_sizes;
CreateBucketsForAttached(&window_sizes);
// How much we need to grow the attached by (collectively).
int grow_attached_by = 0;
if (delta > 0) {
// If the attached windows don't fit when at their initial size, we will
// have to shrink them by how much they overflow.
if (total_initial_size_ >= available_size) {
grow_attached_by = available_size - total_initial_size_;
}
} else {
// If we're shrinking, we grow the attached so the total size remains
// constant.
grow_attached_by = -delta;
}
int leftover_pixels = 0;
while (grow_attached_by != 0) {
int leftovers = GrowFairly(grow_attached_by, &window_sizes);
if (leftovers == grow_attached_by) {
leftover_pixels = leftovers;
break;
}
grow_attached_by = leftovers;
}
for (const auto& window_size : window_sizes) {
sizes->push_back(window_size.size());
}
return leftover_pixels;
}
int WorkspaceWindowResizer::GrowFairly(int pixels,
std::vector<WindowSize>* sizes) const {
bool shrinking = pixels < 0;
std::vector<WindowSize*> nonfull_windows;
for (auto& current_window_size : *sizes) {
if (!current_window_size.is_at_capacity(shrinking)) {
nonfull_windows.push_back(¤t_window_size);
}
}
std::vector<float> ratios;
CalculateGrowthRatios(nonfull_windows, &ratios);
int remaining_pixels = pixels;
bool add_leftover_pixels_to_last = true;
for (size_t i = 0; i < nonfull_windows.size(); ++i) {
int grow_by = pixels * ratios[i];
// Put any leftover pixels into the last window.
if (i == nonfull_windows.size() - 1 && add_leftover_pixels_to_last) {
grow_by = remaining_pixels;
}
int remainder = nonfull_windows[i]->Add(grow_by);
int consumed = grow_by - remainder;
remaining_pixels -= consumed;
if (nonfull_windows[i]->is_at_capacity(shrinking) && remainder > 0) {
// Because this window overflowed, some of the pixels in
// |remaining_pixels| aren't there due to rounding errors. Rather than
// unfairly giving all those pixels to the last window, we refrain from
// allocating them so that this function can be called again to distribute
// the pixels fairly.
add_leftover_pixels_to_last = false;
}
}
return remaining_pixels;
}
void WorkspaceWindowResizer::CalculateGrowthRatios(
const std::vector<WindowSize*>& sizes,
std::vector<float>* out_ratios) const {
DCHECK(out_ratios->empty());
int total_value = 0;
for (auto* size : sizes) {
total_value += size->size();
}
for (auto* size : sizes) {
out_ratios->push_back((static_cast<float>(size->size())) / total_value);
}
}
void WorkspaceWindowResizer::CreateBucketsForAttached(
std::vector<WindowSize>* sizes) const {
for (size_t i = 0; i < attached_windows_.size(); i++) {
int initial_size = initial_size_[i];
aura::WindowDelegate* window_delegate = attached_windows_[i]->delegate();
int min = PrimaryAxisSize(
window_delegate ? window_delegate->GetMinimumSize() : gfx::Size());
int max = PrimaryAxisSize(
window_delegate ? window_delegate->GetMaximumSize() : gfx::Size());
sizes->push_back(WindowSize(initial_size, min, max));
}
}
void WorkspaceWindowResizer::MagneticallySnapToOtherWindows(
const display::Display& display,
gfx::Rect* bounds) {
if (UpdateMagnetismWindow(display, *bounds, kAllMagnetismEdges)) {
gfx::Rect bounds_in_screen = *bounds;
wm::ConvertRectToScreen(GetTarget()->parent(), &bounds_in_screen);
gfx::Point point = OriginForMagneticAttach(
bounds_in_screen, magnetism_window_->GetBoundsInScreen(),
magnetism_edge_);
wm::ConvertPointFromScreen(GetTarget()->parent(), &point);
bounds->set_origin(point);
}
}
void WorkspaceWindowResizer::MagneticallySnapResizeToOtherWindows(
const display::Display& display,
gfx::Rect* bounds) {
const uint32_t edges =
WindowComponentToMagneticEdge(details().window_component);
if (UpdateMagnetismWindow(display, *bounds, edges)) {
gfx::Rect bounds_in_screen = *bounds;
wm::ConvertRectToScreen(GetTarget()->parent(), &bounds_in_screen);
*bounds = BoundsForMagneticResizeAttach(
bounds_in_screen, magnetism_window_->GetBoundsInScreen(),
magnetism_edge_);
wm::ConvertRectFromScreen(GetTarget()->parent(), bounds);
}
}
bool WorkspaceWindowResizer::UpdateMagnetismWindow(
const display::Display& display,
const gfx::Rect& bounds,
uint32_t edges) {
DCHECK(display.is_valid());
// |bounds| are in coordinates of original window's parent.
gfx::Rect bounds_in_screen = bounds;
wm::ConvertRectToScreen(GetTarget()->parent(), &bounds_in_screen);
MagnetismMatcher matcher(bounds_in_screen, edges);
// If we snapped to a window then check it first. That way we don't bounce
// around when close to multiple edges.
if (magnetism_window_) {
if (window_tracker_.Contains(magnetism_window_) &&
matcher.ShouldAttach(magnetism_window_->GetBoundsInScreen(),
&magnetism_edge_)) {
return true;
}
window_tracker_.Remove(magnetism_window_);
magnetism_window_ = nullptr;
}
// Avoid magnetically snapping windows that are not resizable.
// TODO(oshima): change this to window.type() == TYPE_NORMAL.
if (!window_state()->CanResize()) {
return false;
}
// Check the child windows of the root of the display in which the mouse
// cursor is. It doesn't make sense to do magnetism with windows on other
// displays until the cursor enters those displays.
aura::Window* root_window =
Shell::Get()->window_tree_host_manager()->GetRootWindowForDisplayId(
display.id());
aura::Window* container =
desks_util::GetActiveDeskContainerForRoot(root_window);
DCHECK(container);
const std::vector<raw_ptr<aura::Window, VectorExperimental>>& children =
container->children();
for (auto i = children.rbegin();
i != children.rend() && !matcher.AreEdgesObscured(); ++i) {
// Ignore already attached windows.
if (base::Contains(attached_windows_, *i)) {
continue;
}
WindowState* other_state = WindowState::Get(*i);
if (!other_state) {
continue;
}
if (other_state->window() == GetTarget() ||
!other_state->window()->IsVisible() ||
!other_state->IsNormalOrSnapped() || !other_state->CanResize()) {
continue;
}
if (matcher.ShouldAttach(other_state->window()->GetBoundsInScreen(),
&magnetism_edge_)) {
magnetism_window_ = other_state->window();
window_tracker_.Add(magnetism_window_);
return true;
}
}
return false;
}
void WorkspaceWindowResizer::AdjustBoundsForMainWindow(int sticky_size,
gfx::Rect* bounds) {
gfx::Point last_location_in_screen =
gfx::ToRoundedPoint(last_location_in_screen_);
display::Display display =
display::Screen::GetScreen()->GetDisplayNearestPoint(
last_location_in_screen);
gfx::Rect work_area = display.work_area();
wm::ConvertRectFromScreen(GetTarget()->parent(), &work_area);
if (details().window_component == HTCAPTION) {
// Adjust the bounds to the work area where the mouse cursor is located.
// Always keep kMinOnscreenHeight or the window height (whichever is less)
// on the bottom.
int max_y =
work_area.bottom() - std::min(kMinOnscreenHeight, bounds->height());
if (bounds->y() > max_y) {
bounds->set_y(max_y);
} else if (bounds->y() <= work_area.y()) {
// Don't allow dragging above the top of the display until the mouse
// cursor reaches the work area above if any.
bounds->set_y(work_area.y());
}
if (sticky_size > 0) {
// Possibly stick to edge except when a mouse pointer is outside the
// work area.
if (display.work_area().Contains(last_location_in_screen)) {
StickToWorkAreaOnMove(work_area, sticky_size, bounds);
}
MagneticallySnapToOtherWindows(display, bounds);
}
} else if (sticky_size > 0) {
MagneticallySnapResizeToOtherWindows(display, bounds);
if (!magnetism_window_ && sticky_size > 0) {
StickToWorkAreaOnResize(work_area, sticky_size, bounds);
}
}
if (attached_windows_.empty()) {
return;
}
if (details().window_component == HTRIGHT) {
bounds->set_width(std::min(bounds->width(),
work_area.right() - total_min_ - bounds->x()));
} else {
DCHECK_EQ(HTBOTTOM, details().window_component);
bounds->set_height(std::min(bounds->height(),
work_area.bottom() - total_min_ - bounds->y()));
}
}
bool WorkspaceWindowResizer::StickToWorkAreaOnMove(const gfx::Rect& work_area,
int sticky_size,
gfx::Rect* bounds) const {
const int left_edge = work_area.x();
const int right_edge = work_area.right();
const int top_edge = work_area.y();
const int bottom_edge = work_area.bottom();
bool updated = false;
if (ShouldStickToEdge(bounds->x() - left_edge, sticky_size)) {
bounds->set_x(left_edge);
updated = true;
} else if (ShouldStickToEdge(right_edge - bounds->right(), sticky_size)) {
bounds->set_x(right_edge - bounds->width());
updated = true;
}
if (ShouldStickToEdge(bounds->y() - top_edge, sticky_size)) {
bounds->set_y(top_edge);
updated = true;
} else if (ShouldStickToEdge(bottom_edge - bounds->bottom(), sticky_size) &&
bounds->height() < (bottom_edge - top_edge)) {
// Only snap to the bottom if the window is smaller than the work area.
// Doing otherwise can lead to window snapping in weird ways as it bounces
// between snapping to top then bottom.
bounds->set_y(bottom_edge - bounds->height());
updated = true;
}
return updated;
}
void WorkspaceWindowResizer::StickToWorkAreaOnResize(const gfx::Rect& work_area,
int sticky_size,
gfx::Rect* bounds) const {
const uint32_t edges =
WindowComponentToMagneticEdge(details().window_component);
const int left_edge = work_area.x();
const int right_edge = work_area.right();
const int top_edge = work_area.y();
const int bottom_edge = work_area.bottom();
if (edges & MAGNETISM_EDGE_TOP &&
ShouldStickToEdge(bounds->y() - top_edge, sticky_size)) {
bounds->set_height(bounds->bottom() - top_edge);
bounds->set_y(top_edge);
}
if (edges & MAGNETISM_EDGE_LEFT &&
ShouldStickToEdge(bounds->x() - left_edge, sticky_size)) {
bounds->set_width(bounds->right() - left_edge);
bounds->set_x(left_edge);
}
if (edges & MAGNETISM_EDGE_BOTTOM &&
ShouldStickToEdge(bottom_edge - bounds->bottom(), sticky_size)) {
bounds->set_height(bottom_edge - bounds->y());
}
if (edges & MAGNETISM_EDGE_RIGHT &&
ShouldStickToEdge(right_edge - bounds->right(), sticky_size)) {
bounds->set_width(right_edge - bounds->x());
}
}
int WorkspaceWindowResizer::PrimaryAxisSize(const gfx::Size& size) const {
return PrimaryAxisCoordinate(size.width(), size.height());
}
int WorkspaceWindowResizer::PrimaryAxisCoordinate(int x, int y) const {
switch (details().window_component) {
case HTRIGHT:
return x;
case HTBOTTOM:
return y;
default:
NOTREACHED();
}
}
bool WorkspaceWindowResizer::IsSnapTopOrMaximize(
SnapType type,
const display::Display& display) const {
if (type == SnapType::kMaximize) {
return true;
}
switch (GetSnapDisplayOrientation(display)) {
case chromeos::OrientationType::kPortraitPrimary:
return type == SnapType::kPrimary;
case chromeos::OrientationType::kPortraitSecondary:
return type == SnapType::kSecondary;
default:
return false;
}
}
void WorkspaceWindowResizer::UpdateSnapPhantomWindow(
const SnapType target_snap_type,
const display::Display& display) {
if (snap_type_ == target_snap_type) {
return;
}
if (!did_move_or_resize_ || details().window_component != HTCAPTION) {
return;
}
SnapType last_type = snap_type_;
snap_type_ = target_snap_type;
// Reset the controller if no snap.
if (snap_type_ == SnapType::kNone) {
// TODO(crbug/1258197): Don't destroy phantom controller and add exit
// animation.
snap_phantom_window_controller_.reset();
return;
}
const bool is_top_to_maximize =
IsTransitionFromTopToMaximize(last_type, snap_type_, display);
// Reset the controller if switching snap types unless we want to transform
// snap top to maximize so that we can have a fade in show animation when
// switching to the new snap type.
if (snap_type_ != last_type && !is_top_to_maximize) {
snap_phantom_window_controller_.reset();
}
// Update phantom window with snapped guide bounds.
if (!snap_phantom_window_controller_) {
snap_phantom_window_controller_ =
std::make_unique<PhantomWindowController>(GetTarget());
}
gfx::Rect phantom_bounds;
// Note that `target_root` is of the target display, not the currently dragged
// window of `GetTarget()`.
aura::Window* window = GetTarget();
aura::Window* target_root =
Shell::Get()->GetRootWindowForDisplayId(display.id());
switch (snap_type_) {
case SnapType::kPrimary:
phantom_bounds = GetSnappedWindowBounds(
display.work_area(), display, window, SnapViewType::kPrimary,
GetAutoSnapRatio(window, target_root, SnapViewType::kPrimary));
break;
case SnapType::kSecondary:
phantom_bounds = GetSnappedWindowBounds(
display.work_area(), display, window, SnapViewType::kSecondary,
GetAutoSnapRatio(window, target_root, SnapViewType::kSecondary));
break;
case SnapType::kMaximize:
phantom_bounds = display.work_area();
break;
case SnapType::kNone:
NOTREACHED();
}
const bool need_haptic_feedback =
snap_phantom_window_controller_->GetTargetWindowBounds() !=
phantom_bounds &&
!Shell::Get()->toplevel_window_event_handler()->in_gesture_drag();
if (is_top_to_maximize) {
snap_phantom_window_controller_
->TransformPhantomWidgetFromSnapTopToMaximize(phantom_bounds);
// Hide maximize cue once the top-snap phantom turns into maximize phantom.
snap_phantom_window_controller_->HideMaximizeCue();
} else {
snap_phantom_window_controller_->Show(phantom_bounds);
// Show the maximize cue on top-snap phantom.
if (IsSnapTopOrMaximize(snap_type_, display) &&
snap_type_ != SnapType::kMaximize && snap_type_ != last_type) {
snap_phantom_window_controller_->ShowMaximizeCue();
}
}
// Fire a haptic event if necessary.
if (need_haptic_feedback) {
chromeos::haptics_util::PlayHapticTouchpadEffect(
ui::HapticTouchpadEffect::kSnap,
ui::HapticTouchpadEffectStrength::kMedium);
}
}
void WorkspaceWindowResizer::RestackWindows() {
if (attached_windows_.empty()) {
return;
}
// Build a map from index in children to window, returning if there is a
// window with a different parent.
using IndexToWindowMap = std::map<size_t, aura::Window*>;
IndexToWindowMap map;
aura::Window* parent = GetTarget()->parent();
const std::vector<raw_ptr<aura::Window, VectorExperimental>>& windows(
parent->children());
map[base::ranges::find(windows, GetTarget()) - windows.begin()] = GetTarget();
for (aura::Window* attached_window : attached_windows_) {
if (attached_window->parent() != parent) {
return;
}
size_t index =
base::ranges::find(windows, attached_window) - windows.begin();
map[index] = attached_window;
}
// Reorder the windows starting at the topmost.
parent->StackChildAtTop(map.rbegin()->second);
for (auto i = map.rbegin(); i != map.rend();) {
aura::Window* window = i->second;
++i;
if (i != map.rend()) {
parent->StackChildBelow(i->second, window);
}
}
}
WorkspaceWindowResizer::SnapType WorkspaceWindowResizer::GetSnapType(
const display::Display& display,
const gfx::PointF& location_in_screen) const {
SnapType snap_type = ::ash::GetSnapType(display, location_in_screen);
// Change |snap_type| to none if the requested snap type is not compatible
// with the window.
switch (snap_type) {
case SnapType::kPrimary:
case SnapType::kSecondary:
if (!window_state()->CanSnapOnDisplay(display)) {
snap_type = SnapType::kNone;
}
break;
case SnapType::kMaximize:
if (!window_state()->CanMaximize() || !can_snap_to_maximize_) {
snap_type = SnapType::kNone;
}
break;
case SnapType::kNone:
break;
}
return snap_type;
}
bool WorkspaceWindowResizer::AreBoundsValidSnappedBounds(
aura::Window* window) const {
const gfx::Rect bounds_in_parent = window->bounds();
const WindowState* state = window_state();
const WindowStateType state_type = state->GetStateType();
DCHECK(state_type == WindowStateType::kPrimarySnapped ||
state_type == WindowStateType::kSecondarySnapped);
SnapViewType snapped_type = state_type == WindowStateType::kPrimarySnapped
? SnapViewType::kPrimary
: SnapViewType::kSecondary;
const float snap_ratio =
state->snap_ratio().value_or(chromeos::kDefaultSnapRatio);
gfx::Rect snapped_bounds = GetSnappedWindowBounds(
screen_util::GetDisplayWorkAreaBoundsInParent(window),
display::Screen::GetScreen()->GetDisplayNearestWindow(window), window,
snapped_type, snap_ratio);
return bounds_in_parent.ApproximatelyEqual(snapped_bounds, 1);
}
void WorkspaceWindowResizer::SetWindowStateTypeFromGesture(
aura::Window* window,
WindowStateType new_state_type) {
WindowState* window_state = WindowState::Get(window);
// TODO(oshima): Move extra logic (set_unminimize_to_restore_bounds,
// SetRestoreBoundsInParent) that modifies the window state
// into WindowState.
switch (new_state_type) {
case WindowStateType::kMinimized:
if (window_state->CanMinimize()) {
window_state->Minimize();
window_state->set_unminimize_to_restore_bounds(true);
window_state->SetRestoreBoundsInParent(restore_bounds_for_gesture_);
}
break;
case WindowStateType::kMaximized:
if (window_state->CanMaximize()) {
window_state->SetRestoreBoundsInParent(restore_bounds_for_gesture_);
window_state->Maximize();
}
break;
case WindowStateType::kPrimarySnapped:
if (window_state->CanSnap()) {
window_state->SetRestoreBoundsInParent(restore_bounds_for_gesture_);
const WindowSnapWMEvent event(
WM_EVENT_SNAP_PRIMARY,
WindowSnapActionSource::kDragWindowToEdgeToSnap);
window_state->OnWMEvent(&event);
}
break;
case WindowStateType::kSecondarySnapped:
if (window_state->CanSnap()) {
window_state->SetRestoreBoundsInParent(restore_bounds_for_gesture_);
const WindowSnapWMEvent event(
WM_EVENT_SNAP_SECONDARY,
WindowSnapActionSource::kDragWindowToEdgeToSnap);
window_state->OnWMEvent(&event);
}
break;
default:
NOTREACHED();
}
}
void WorkspaceWindowResizer::StartDragForAttachedWindows() {
if (attached_windows_.empty()) {
return;
}
// The component of the attached windows is always the opposite component of
// the main window.
const int main_window_component = details().window_component;
DCHECK(main_window_component == HTRIGHT || main_window_component == HTBOTTOM);
int window_component = HTNOWHERE;
if (main_window_component == HTRIGHT) {
window_component = HTLEFT;
} else if (main_window_component == HTBOTTOM) {
window_component = HTTOP;
}
DCHECK(window_component == HTLEFT || window_component == HTTOP);
for (aura::Window* window : attached_windows_) {
WindowState* window_state = WindowState::Get(window);
window_state->CreateDragDetails(details().initial_location_in_parent,
window_component,
wm::WINDOW_MOVE_SOURCE_MOUSE);
window_state->OnDragStarted(window_component);
}
}
void WorkspaceWindowResizer::EndDragForAttachedWindows(bool revert_drag) {
if (attached_windows_.empty()) {
return;
}
// TODO(aluh): Figure out why location is in parent coord here,
// but in screen coord for the rest of the class.
gfx::PointF last_location_in_parent = last_location_in_screen_;
wm::ConvertPointFromScreen(GetTarget()->parent(), &last_location_in_parent);
for (aura::Window* window : attached_windows_) {
WindowState* window_state = WindowState::Get(window);
if (revert_drag) {
window_state->OnRevertDrag(last_location_in_parent);
} else {
window_state->OnCompleteDrag(last_location_in_parent);
}
window_state->DeleteDragDetails();
}
}
} // namespace ash