chromium/base/allocator/partition_allocator/src/partition_alloc/partition_alloc_base/numerics/safe_math_arm_impl.h

// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef PARTITION_ALLOC_PARTITION_ALLOC_BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_
#define PARTITION_ALLOC_PARTITION_ALLOC_BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_

#include <cassert>
#include <type_traits>

#include "partition_alloc/partition_alloc_base/numerics/safe_conversions.h"

namespace partition_alloc::internal::base::internal {

template <typename T, typename U>
struct CheckedMulFastAsmOp {
  static const bool is_supported =
      kEnableAsmCode && FastIntegerArithmeticPromotion<T, U>::is_contained;

  // The following is not an assembler routine and is thus constexpr safe, it
  // just emits much more efficient code than the Clang and GCC builtins for
  // performing overflow-checked multiplication when a twice wider type is
  // available. The below compiles down to 2-3 instructions, depending on the
  // width of the types in use.
  // As an example, an int32_t multiply compiles to:
  //    smull   r0, r1, r0, r1
  //    cmp     r1, r1, asr #31
  // And an int16_t multiply compiles to:
  //    smulbb  r1, r1, r0
  //    asr     r2, r1, #16
  //    cmp     r2, r1, asr #15
  template <typename V>
  static constexpr bool Do(T x, U y, V* result) {
    using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
    Promotion presult;

    presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
    if (!IsValueInRangeForNumericType<V>(presult)) {
      return false;
    }
    *result = static_cast<V>(presult);
    return true;
  }
};

template <typename T, typename U>
struct ClampedAddFastAsmOp {
  static const bool is_supported =
      kEnableAsmCode && BigEnoughPromotion<T, U>::is_contained &&
      IsTypeInRangeForNumericType<
          int32_t,
          typename BigEnoughPromotion<T, U>::type>::value;

  template <typename V>
  __attribute__((always_inline)) static V Do(T x, U y) {
    // This will get promoted to an int, so let the compiler do whatever is
    // clever and rely on the saturated cast to bounds check.
    if (IsIntegerArithmeticSafe<int, T, U>::value) {
      return saturated_cast<V>(x + y);
    }

    int32_t result;
    int32_t x_i32 = checked_cast<int32_t>(x);
    int32_t y_i32 = checked_cast<int32_t>(y);

    asm("qadd %[result], %[first], %[second]"
        : [result] "=r"(result)
        : [first] "r"(x_i32), [second] "r"(y_i32));
    return saturated_cast<V>(result);
  }
};

template <typename T, typename U>
struct ClampedSubFastAsmOp {
  static const bool is_supported =
      kEnableAsmCode && BigEnoughPromotion<T, U>::is_contained &&
      IsTypeInRangeForNumericType<
          int32_t,
          typename BigEnoughPromotion<T, U>::type>::value;

  template <typename V>
  __attribute__((always_inline)) static V Do(T x, U y) {
    // This will get promoted to an int, so let the compiler do whatever is
    // clever and rely on the saturated cast to bounds check.
    if (IsIntegerArithmeticSafe<int, T, U>::value) {
      return saturated_cast<V>(x - y);
    }

    int32_t result;
    int32_t x_i32 = checked_cast<int32_t>(x);
    int32_t y_i32 = checked_cast<int32_t>(y);

    asm("qsub %[result], %[first], %[second]"
        : [result] "=r"(result)
        : [first] "r"(x_i32), [second] "r"(y_i32));
    return saturated_cast<V>(result);
  }
};

template <typename T, typename U>
struct ClampedMulFastAsmOp {
  static const bool is_supported =
      kEnableAsmCode && CheckedMulFastAsmOp<T, U>::is_supported;

  template <typename V>
  __attribute__((always_inline)) static V Do(T x, U y) {
    // Use the CheckedMulFastAsmOp for full-width 32-bit values, because
    // it's fewer instructions than promoting and then saturating.
    if (!IsIntegerArithmeticSafe<int32_t, T, U>::value &&
        !IsIntegerArithmeticSafe<uint32_t, T, U>::value) {
      V result;
      return CheckedMulFastAsmOp<T, U>::Do(x, y, &result)
                 ? result
                 : CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y));
    }

    assert((FastIntegerArithmeticPromotion<T, U>::is_contained));
    using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
    return saturated_cast<V>(static_cast<Promotion>(x) *
                             static_cast<Promotion>(y));
  }
};

}  // namespace partition_alloc::internal::base::internal

#endif  // PARTITION_ALLOC_PARTITION_ALLOC_BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_