// Copyright 2011 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // PLEASE READ: Do you really need a singleton? If possible, use a // function-local static of type base::NoDestructor<T> instead: // // Factory& Factory::GetInstance() { // static base::NoDestructor<Factory> instance; // return *instance; // } // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // // Singletons make it hard to determine the lifetime of an object, which can // lead to buggy code and spurious crashes. // // Instead of adding another singleton into the mix, try to identify either: // a) An existing singleton that can manage your object's lifetime // b) Locations where you can deterministically create the object and pass // into other objects // // If you absolutely need a singleton, please keep them as trivial as possible // and ideally a leaf dependency. Singletons get problematic when they attempt // to do too much in their destructor or have circular dependencies. #ifndef BASE_MEMORY_SINGLETON_H_ #define BASE_MEMORY_SINGLETON_H_ #include <atomic> #include "base/dcheck_is_on.h" #include "base/lazy_instance_helpers.h" #include "base/threading/thread_restrictions.h" namespace base { // Default traits for Singleton<Type>. Calls operator new and operator delete on // the object. Registers automatic deletion at process exit. // Overload if you need arguments or another memory allocation function. template<typename Type> struct DefaultSingletonTraits { … }; // Alternate traits for use with the Singleton<Type>. Identical to // DefaultSingletonTraits except that the Singleton will not be cleaned up // at exit. template<typename Type> struct LeakySingletonTraits : public DefaultSingletonTraits<Type> { … }; // Alternate traits for use with the Singleton<Type>. Allocates memory // for the singleton instance from a static buffer. The singleton will // be cleaned up at exit, but can't be revived after destruction unless // the ResurrectForTesting() method is called. // // This is useful for a certain category of things, notably logging and // tracing, where the singleton instance is of a type carefully constructed to // be safe to access post-destruction. // In logging and tracing you'll typically get stray calls at odd times, like // during static destruction, thread teardown and the like, and there's a // termination race on the heap-based singleton - e.g. if one thread calls // get(), but then another thread initiates AtExit processing, the first thread // may call into an object residing in unallocated memory. If the instance is // allocated from the data segment, then this is survivable. // // The destructor is to deallocate system resources, in this case to unregister // a callback the system will invoke when logging levels change. Note that // this is also used in e.g. Chrome Frame, where you have to allow for the // possibility of loading briefly into someone else's process space, and // so leaking is not an option, as that would sabotage the state of your host // process once you've unloaded. template <typename Type> struct StaticMemorySingletonTraits { … }; template <typename Type> alignas(Type) char StaticMemorySingletonTraits<Type>::buffer_[sizeof(Type)]; template <typename Type> std::atomic<bool> StaticMemorySingletonTraits<Type>::dead_ = …; // The Singleton<Type, Traits, DifferentiatingType> class manages a single // instance of Type which will be created on first use and will be destroyed at // normal process exit). The Trait::Delete function will not be called on // abnormal process exit. // // DifferentiatingType is used as a key to differentiate two different // singletons having the same memory allocation functions but serving a // different purpose. This is mainly used for Locks serving different purposes. // // Example usage: // // In your header: // namespace base { // template <typename T> // struct DefaultSingletonTraits; // } // class FooClass { // public: // static FooClass* GetInstance(); <-- See comment below on this. // // FooClass(const FooClass&) = delete; // FooClass& operator=(const FooClass&) = delete; // // void Bar() { ... } // // private: // FooClass() { ... } // friend struct base::DefaultSingletonTraits<FooClass>; // }; // // In your source file: // #include "base/memory/singleton.h" // FooClass* FooClass::GetInstance() { // return base::Singleton<FooClass>::get(); // } // // Or for leaky singletons: // #include "base/memory/singleton.h" // FooClass* FooClass::GetInstance() { // return base::Singleton< // FooClass, base::LeakySingletonTraits<FooClass>>::get(); // } // // And to call methods on FooClass: // FooClass::GetInstance()->Bar(); // // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance // and it is important that FooClass::GetInstance() is not inlined in the // header. This makes sure that when source files from multiple targets include // this header they don't end up with different copies of the inlined code // creating multiple copies of the singleton. // // Singleton<> has no non-static members and doesn't need to actually be // instantiated. // // This class is itself thread-safe. The underlying Type must of course be // thread-safe if you want to use it concurrently. Two parameters may be tuned // depending on the user's requirements. // // Glossary: // RAE = kRegisterAtExit // // On every platform, if Traits::RAE is true, the singleton will be destroyed at // process exit. More precisely it uses AtExitManager which requires an // object of this type to be instantiated. AtExitManager mimics the semantics // of atexit() such as LIFO order but under Windows is safer to call. For more // information see at_exit.h. // // If Traits::RAE is false, the singleton will not be freed at process exit, // thus the singleton will be leaked if it is ever accessed. Traits::RAE // shouldn't be false unless absolutely necessary. Remember that the heap where // the object is allocated may be destroyed by the CRT anyway. // // Caveats: // (a) Every call to get(), operator->() and operator*() incurs some overhead // (16ns on my P4/2.8GHz) to check whether the object has already been // initialized. You may wish to cache the result of get(); it will not // change. // // (b) Your factory function must never throw an exception. This class is not // exception-safe. // template <typename Type, typename Traits = DefaultSingletonTraits<Type>, typename DifferentiatingType = Type> class Singleton { … }; template <typename Type, typename Traits, typename DifferentiatingType> std::atomic<uintptr_t> Singleton<Type, Traits, DifferentiatingType>::instance_ = …; } // namespace base #endif // BASE_MEMORY_SINGLETON_H_