chromium/base/message_loop/message_pump_android.cc

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/message_loop/message_pump_android.h"

#include <android/looper.h>
#include <errno.h>
#include <fcntl.h>
#include <jni.h>
#include <sys/eventfd.h>
#include <sys/timerfd.h>
#include <sys/types.h>
#include <unistd.h>

#include <atomic>
#include <utility>

#include "base/android/input_hint_checker.h"
#include "base/android/jni_android.h"
#include "base/android/scoped_java_ref.h"
#include "base/check_op.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/run_loop.h"
#include "base/task/task_features.h"
#include "base/time/time.h"
#include "build/build_config.h"

namespace base {

namespace {

// https://crbug.com/873588. The stack may not be aligned when the ALooper calls
// into our code due to the inconsistent ABI on older Android OS versions.
//
// https://crbug.com/330761384#comment3. Calls from libutils.so into
// NonDelayedLooperCallback() and DelayedLooperCallback() confuse aarch64 builds
// with orderfile instrumentation causing incorrect value in
// __builtin_return_address(0). Disable instrumentation for them. TODO(pasko):
// Add these symbols to the orderfile manually or fix the builtin.
#if defined(ARCH_CPU_X86)
#define NO_INSTRUMENT_STACK_ALIGN \
  __attribute__((force_align_arg_pointer, no_instrument_function))
#else
#define NO_INSTRUMENT_STACK_ALIGN __attribute__((no_instrument_function))
#endif

NO_INSTRUMENT_STACK_ALIGN int NonDelayedLooperCallback(int fd,
                                                       int events,
                                                       void* data) {
  if (events & ALOOPER_EVENT_HANGUP)
    return 0;

  DCHECK(events & ALOOPER_EVENT_INPUT);
  MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data);
  pump->OnNonDelayedLooperCallback();
  return 1;  // continue listening for events
}

NO_INSTRUMENT_STACK_ALIGN int DelayedLooperCallback(int fd,
                                                    int events,
                                                    void* data) {
  if (events & ALOOPER_EVENT_HANGUP)
    return 0;

  DCHECK(events & ALOOPER_EVENT_INPUT);
  MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data);
  pump->OnDelayedLooperCallback();
  return 1;  // continue listening for events
}

// A bit added to the |non_delayed_fd_| to keep it signaled when we yield to
// native work below.
constexpr uint64_t kTryNativeWorkBeforeIdleBit = uint64_t(1) << 32;

std::atomic_bool g_fast_to_sleep = false;
}  // namespace

MessagePumpAndroid::MessagePumpAndroid()
    : env_(base::android::AttachCurrentThread()) {
  // The Android native ALooper uses epoll to poll our file descriptors and wake
  // us up. We use a simple level-triggered eventfd to signal that non-delayed
  // work is available, and a timerfd to signal when delayed work is ready to
  // be run.
  non_delayed_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
  CHECK_NE(non_delayed_fd_, -1);
  DCHECK_EQ(TimeTicks::GetClock(), TimeTicks::Clock::LINUX_CLOCK_MONOTONIC);

  delayed_fd_ = checked_cast<int>(
      timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK | TFD_CLOEXEC));
  CHECK_NE(delayed_fd_, -1);

  looper_ = ALooper_prepare(0);
  DCHECK(looper_);
  // Add a reference to the looper so it isn't deleted on us.
  ALooper_acquire(looper_);
  ALooper_addFd(looper_, non_delayed_fd_, 0, ALOOPER_EVENT_INPUT,
                &NonDelayedLooperCallback, reinterpret_cast<void*>(this));
  ALooper_addFd(looper_, delayed_fd_, 0, ALOOPER_EVENT_INPUT,
                &DelayedLooperCallback, reinterpret_cast<void*>(this));
}

MessagePumpAndroid::~MessagePumpAndroid() {
  DCHECK_EQ(ALooper_forThread(), looper_);
  ALooper_removeFd(looper_, non_delayed_fd_);
  ALooper_removeFd(looper_, delayed_fd_);
  ALooper_release(looper_);
  looper_ = nullptr;

  close(non_delayed_fd_);
  close(delayed_fd_);
}

void MessagePumpAndroid::InitializeFeatures() {
  g_fast_to_sleep = base::FeatureList::IsEnabled(kPumpFastToSleepAndroid);
}

void MessagePumpAndroid::OnDelayedLooperCallback() {
  // There may be non-Chromium callbacks on the same ALooper which may have left
  // a pending exception set, and ALooper does not check for this between
  // callbacks. Check here, and if there's already an exception, just skip this
  // iteration without clearing the fd. If the exception ends up being non-fatal
  // then we'll just get called again on the next polling iteration.
  if (base::android::HasException(env_))
    return;

  // ALooper_pollOnce may call this after Quit() if OnNonDelayedLooperCallback()
  // resulted in Quit() in the same round.
  if (ShouldQuit())
    return;

  // Clear the fd.
  uint64_t value;
  long ret = read(delayed_fd_, &value, sizeof(value));

  // TODO(mthiesse): Figure out how it's possible to hit EAGAIN here.
  // According to http://man7.org/linux/man-pages/man2/timerfd_create.2.html
  // EAGAIN only happens if no timer has expired. Also according to the man page
  // poll only returns readable when a timer has expired. So this function will
  // only be called when a timer has expired, but reading reveals no timer has
  // expired...
  // Quit() and ScheduleDelayedWork() are the only other functions that touch
  // the timerfd, and they both run on the same thread as this callback, so
  // there are no obvious timing or multi-threading related issues.
  DPCHECK(ret >= 0 || errno == EAGAIN);
  DoDelayedLooperWork();
}

void MessagePumpAndroid::DoDelayedLooperWork() {
  delayed_scheduled_time_.reset();

  Delegate::NextWorkInfo next_work_info = delegate_->DoWork();

  if (ShouldQuit())
    return;

  if (next_work_info.is_immediate()) {
    ScheduleWork();
    return;
  }

  delegate_->DoIdleWork();
  if (!next_work_info.delayed_run_time.is_max())
    ScheduleDelayedWork(next_work_info);
}

void MessagePumpAndroid::OnNonDelayedLooperCallback() {
  // There may be non-Chromium callbacks on the same ALooper which may have left
  // a pending exception set, and ALooper does not check for this between
  // callbacks. Check here, and if there's already an exception, just skip this
  // iteration without clearing the fd. If the exception ends up being non-fatal
  // then we'll just get called again on the next polling iteration.
  if (base::android::HasException(env_))
    return;

  // ALooper_pollOnce may call this after Quit() if OnDelayedLooperCallback()
  // resulted in Quit() in the same round.
  if (ShouldQuit())
    return;

  // We're about to process all the work requested by ScheduleWork().
  // MessagePump users are expected to do their best not to invoke
  // ScheduleWork() again before DoWork() returns a non-immediate
  // NextWorkInfo below. Hence, capturing the file descriptor's value now and
  // resetting its contents to 0 should be okay. The value currently stored
  // should be greater than 0 since work having been scheduled is the reason
  // we're here. See http://man7.org/linux/man-pages/man2/eventfd.2.html
  uint64_t value = 0;
  long ret = read(non_delayed_fd_, &value, sizeof(value));
  DPCHECK(ret >= 0);
  DCHECK_GT(value, 0U);
  bool do_idle_work = value == kTryNativeWorkBeforeIdleBit;
  DoNonDelayedLooperWork(do_idle_work);
}

void MessagePumpAndroid::DoNonDelayedLooperWork(bool do_idle_work) {
  // Note: We can't skip DoWork() even if |do_idle_work| is true here (i.e. no
  // additional ScheduleWork() since yielding to native) as delayed tasks might
  // have come in and we need to re-sample |next_work_info|.

  // Runs all application tasks scheduled to run.
  Delegate::NextWorkInfo next_work_info;
  do {
    if (ShouldQuit())
      return;

    next_work_info = delegate_->DoWork();

    // If we are prioritizing native, and the next work would normally run
    // immediately, skip the next work and let the native work items have a
    // chance to run. This is useful when user input is waiting for native to
    // have a chance to run.
    if (next_work_info.is_immediate() && next_work_info.yield_to_native) {
      ScheduleWork();
      return;
    }

    // As an optimization, yield to the Looper when input events are waiting to
    // be handled. In some cases input events can remain undetected. Such "input
    // hint false negatives" happen, for example, during initialization, in
    // multi-window cases, or when a previous value is cached to throttle
    // polling the input channel.
    if (is_type_ui_ && next_work_info.is_immediate() &&
        android::InputHintChecker::HasInput()) {
      ScheduleWork();
      return;
    }
  } while (next_work_info.is_immediate());

  // Do not resignal |non_delayed_fd_| if we're quitting (this pump doesn't
  // allow nesting so needing to resume in an outer loop is not an issue
  // either).
  if (ShouldQuit())
    return;

  // Under the fast to sleep feature, `do_idle_work` is ignored, and the pump
  // will always "sleep" after finishing all its work items.
  if (!g_fast_to_sleep) {
    // Before declaring this loop idle, yield to native work items and arrange
    // to be called again (unless we're already in that second call).
    if (!do_idle_work) {
      ScheduleWorkInternal(/*do_idle_work=*/true);
      return;
    }

    // We yielded to native work items already and they didn't generate a
    // ScheduleWork() request so we can declare idleness. It's possible for a
    // ScheduleWork() request to come in racily while this method unwinds, this
    // is fine and will merely result in it being re-invoked shortly after it
    // returns.
    // TODO(scheduler-dev): this doesn't account for tasks that don't ever call
    // SchedulerWork() but still keep the system non-idle (e.g., the Java
    // Handler API). It would be better to add an API to query the presence of
    // native tasks instead of relying on yielding once +
    // kTryNativeWorkBeforeIdleBit.
    DCHECK(do_idle_work);
  }

  if (ShouldQuit()) {
    return;
  }

  // At this point, the java looper might not be idle - it's impossible to know
  // pre-Android-M, so we may end up doing Idle work while java tasks are still
  // queued up. Note that this won't cause us to fail to run java tasks using
  // QuitWhenIdle, as the JavaHandlerThread will finish running all currently
  // scheduled tasks before it quits. Also note that we can't just add an idle
  // callback to the java looper, as that will fire even if application tasks
  // are still queued up.
  delegate_->DoIdleWork();
  if (!next_work_info.delayed_run_time.is_max()) {
    ScheduleDelayedWork(next_work_info);
  }
}

void MessagePumpAndroid::Run(Delegate* delegate) {
  CHECK(false) << "Unexpected call to Run()";
}

void MessagePumpAndroid::Attach(Delegate* delegate) {
  DCHECK(!quit_);

  // Since the Looper is controlled by the UI thread or JavaHandlerThread, we
  // can't use Run() like we do on other platforms or we would prevent Java
  // tasks from running. Instead we create and initialize a run loop here, then
  // return control back to the Looper.

  SetDelegate(delegate);
  run_loop_ = std::make_unique<RunLoop>();
  // Since the RunLoop was just created above, BeforeRun should be guaranteed to
  // return true (it only returns false if the RunLoop has been Quit already).
  if (!run_loop_->BeforeRun())
    NOTREACHED();
}

void MessagePumpAndroid::Quit() {
  if (quit_)
    return;

  quit_ = true;

  int64_t value;
  // Clear any pending timer.
  read(delayed_fd_, &value, sizeof(value));
  // Clear the eventfd.
  read(non_delayed_fd_, &value, sizeof(value));

  if (run_loop_) {
    run_loop_->AfterRun();
    run_loop_ = nullptr;
  }
  if (on_quit_callback_) {
    std::move(on_quit_callback_).Run();
  }
}

void MessagePumpAndroid::ScheduleWork() {
  ScheduleWorkInternal(/*do_idle_work=*/false);
}

void MessagePumpAndroid::ScheduleWorkInternal(bool do_idle_work) {
  // Write (add) |value| to the eventfd. This tells the Looper to wake up and
  // call our callback, allowing us to run tasks. This also allows us to detect,
  // when we clear the fd, whether additional work was scheduled after we
  // finished performing work, but before we cleared the fd, as we'll read back
  // >=2 instead of 1 in that case. See the eventfd man pages
  // (http://man7.org/linux/man-pages/man2/eventfd.2.html) for details on how
  // the read and write APIs for this file descriptor work, specifically without
  // EFD_SEMAPHORE.
  // Note: Calls with |do_idle_work| set to true may race with potential calls
  // where the parameter is false. This is fine as write() is adding |value|,
  // not overwriting the existing value, and as such racing calls would merely
  // have their values added together. Since idle work is only executed when the
  // value read equals kTryNativeWorkBeforeIdleBit, a race would prevent idle
  // work from being run and trigger another call to this method with
  // |do_idle_work| set to true.
  uint64_t value = do_idle_work ? kTryNativeWorkBeforeIdleBit : 1;
  long ret = write(non_delayed_fd_, &value, sizeof(value));
  DPCHECK(ret >= 0);
}

void MessagePumpAndroid::ScheduleDelayedWork(
    const Delegate::NextWorkInfo& next_work_info) {
  if (ShouldQuit())
    return;

  if (delayed_scheduled_time_ &&
      *delayed_scheduled_time_ == next_work_info.delayed_run_time) {
    return;
  }

  DCHECK(!next_work_info.is_immediate());
  delayed_scheduled_time_ = next_work_info.delayed_run_time;
  int64_t nanos =
      next_work_info.delayed_run_time.since_origin().InNanoseconds();
  struct itimerspec ts;
  ts.it_interval.tv_sec = 0;  // Don't repeat.
  ts.it_interval.tv_nsec = 0;
  ts.it_value.tv_sec =
      static_cast<time_t>(nanos / TimeTicks::kNanosecondsPerSecond);
  ts.it_value.tv_nsec = nanos % TimeTicks::kNanosecondsPerSecond;

  long ret = timerfd_settime(delayed_fd_, TFD_TIMER_ABSTIME, &ts, nullptr);
  DPCHECK(ret >= 0);
}

void MessagePumpAndroid::QuitWhenIdle(base::OnceClosure callback) {
  DCHECK(!on_quit_callback_);
  DCHECK(run_loop_);
  on_quit_callback_ = std::move(callback);
  run_loop_->QuitWhenIdle();
  // Pump the loop in case we're already idle.
  ScheduleWork();
}

MessagePump::Delegate* MessagePumpAndroid::SetDelegate(Delegate* delegate) {
  return std::exchange(delegate_, delegate);
}

bool MessagePumpAndroid::SetQuit(bool quit) {
  return std::exchange(quit_, quit);
}

}  // namespace base