chromium/base/numerics/safe_conversions.h

// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_H_

#include <stddef.h>

#include <cmath>
#include <concepts>
#include <limits>
#include <type_traits>

#include "base/numerics/safe_conversions_impl.h"  // IWYU pragma: export

#if defined(__ARMEL__) && !defined(__native_client__)
#include "base/numerics/safe_conversions_arm_impl.h"  // IWYU pragma: export
#define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
#else
#define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
#endif

namespace base {
namespace internal {

#if !BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
template <typename Dst, typename Src>
struct SaturateFastAsmOp {};
#endif  // BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
#undef BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS

// The following special case a few specific integer conversions where we can
// eke out better performance than range checking.
template <typename Dst, typename Src>
struct IsValueInRangeFastOp {};

// Signed to signed range comparison.
IsValueInRangeFastOp<Dst, Src>;

// Signed to unsigned range comparison.
IsValueInRangeFastOp<Dst, Src>;

// Convenience function that returns true if the supplied value is in range
// for the destination type.
template <typename Dst, typename Src>
constexpr bool IsValueInRangeForNumericType(Src value) {}

// checked_cast<> is analogous to static_cast<> for numeric types,
// except that it CHECKs that the specified numeric conversion will not
// overflow or underflow. NaN source will always trigger a CHECK.
template <typename Dst,
          class CheckHandler = internal::CheckOnFailure,
          typename Src>
constexpr Dst checked_cast(Src value) {}

// Default boundaries for integral/float: max/infinity, lowest/-infinity, 0/NaN.
// You may provide your own limits (e.g. to saturated_cast) so long as you
// implement all of the static constexpr member functions in the class below.
template <typename T>
struct SaturationDefaultLimits : public std::numeric_limits<T> {};

template <typename Dst, template <typename> class S, typename Src>
constexpr Dst saturated_cast_impl(Src value, RangeCheck constraint) {}

// We can reduce the number of conditions and get slightly better performance
// for normal signed and unsigned integer ranges. And in the specific case of
// Arm, we can use the optimized saturation instructions.
template <typename Dst, typename Src>
struct SaturateFastOp {};

SaturateFastOp<Dst, Src>;

SaturateFastOp<Dst, Src>;

// saturated_cast<> is analogous to static_cast<> for numeric types, except
// that the specified numeric conversion will saturate by default rather than
// overflow or underflow, and NaN assignment to an integral will return 0.
// All boundary condition behaviors can be overridden with a custom handler.
template <typename Dst,
          template <typename> class SaturationHandler = SaturationDefaultLimits,
          typename Src>
constexpr Dst saturated_cast(Src value) {}

// strict_cast<> is analogous to static_cast<> for numeric types, except that
// it will cause a compile failure if the destination type is not large enough
// to contain any value in the source type. It performs no runtime checking.
template <typename Dst, typename Src>
constexpr Dst strict_cast(Src value) {}

// Some wrappers to statically check that a type is in range.
template <typename Dst, typename Src>
struct IsNumericRangeContained {};

IsNumericRangeContained<Dst, Src>;

// StrictNumeric implements compile time range checking between numeric types by
// wrapping assignment operations in a strict_cast. This class is intended to be
// used for function arguments and return types, to ensure the destination type
// can always contain the source type. This is essentially the same as enforcing
// -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied
// incrementally at API boundaries, making it easier to convert code so that it
// compiles cleanly with truncation warnings enabled.
// This template should introduce no runtime overhead, but it also provides no
// runtime checking of any of the associated mathematical operations. Use
// CheckedNumeric for runtime range checks of the actual value being assigned.
template <typename T>
class StrictNumeric {};

// Convenience wrapper returns a StrictNumeric from the provided arithmetic
// type.
template <typename T>
constexpr StrictNumeric<typename UnderlyingType<T>::type> MakeStrictNum(
    const T value) {}

#define BASE_NUMERIC_COMPARISON_OPERATORS(CLASS, NAME, OP)

BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLess, <)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLessOrEqual, <=)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreater, >)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreaterOrEqual, >=)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsEqual, ==)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsNotEqual, !=)

}  // namespace internal

as_signed;
as_unsigned;
checked_cast;
IsTypeInRangeForNumericType;
IsValueInRangeForNumericType;
IsValueNegative;
MakeStrictNum;
SafeUnsignedAbs;
saturated_cast;
strict_cast;
StrictNumeric;

// Explicitly make a shorter size_t alias for convenience.
SizeT;

// floating -> integral conversions that saturate and thus can actually return
// an integral type.
//
// Generally, what you want is saturated_cast<Dst>(std::nearbyint(x)), which
// rounds correctly according to IEEE-754 (round to nearest, ties go to nearest
// even number; this avoids bias). If your code is performance-critical
// and you are sure that you will never overflow, you can use std::lrint()
// or std::llrint(), which return a long or long long directly.
//
// Below are convenience functions around similar patterns, except that
// they round in nonstandard directions and will generally be slower.

// Rounds towards negative infinity (i.e., down).
template <typename Dst = int, typename Src>
  requires(std::integral<Dst> && std::floating_point<Src>)
Dst ClampFloor(Src value) {}

// Rounds towards positive infinity (i.e., up).
template <typename Dst = int, typename Src>
  requires(std::integral<Dst> && std::floating_point<Src>)
Dst ClampCeil(Src value) {}

// Rounds towards nearest integer, with ties away from zero.
// This means that 0.5 will be rounded to 1 and 1.5 will be rounded to 2.
// Similarly, -0.5 will be rounded to -1 and -1.5 will be rounded to -2.
//
// This is normally not what you want accuracy-wise (it introduces a small bias
// away from zero), and it is not the fastest option, but it is frequently what
// existing code expects. Compare with saturated_cast<Dst>(std::nearbyint(x))
// or std::lrint(x), which would round 0.5 and -0.5 to 0 but 1.5 to 2 and
// -1.5 to -2.
template <typename Dst = int, typename Src>
  requires(std::integral<Dst> && std::floating_point<Src>)
Dst ClampRound(Src value) {}

}  // namespace base

#endif  // BASE_NUMERICS_SAFE_CONVERSIONS_H_