// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/power_monitor/battery_level_provider.h"
#define INITGUID
#include <windows.h> // Must be in front of other Windows header files.
#include <devguid.h>
#include <poclass.h>
#include <setupapi.h>
#include <winioctl.h>
#include <algorithm>
#include <array>
#include <vector>
#include "base/memory/weak_ptr.h"
#include "base/metrics/histogram_macros.h"
#include "base/numerics/safe_conversions.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/task_traits.h"
#include "base/task/thread_pool.h"
#include "base/threading/scoped_blocking_call.h"
#include "base/win/scoped_devinfo.h"
#include "base/win/scoped_handle.h"
namespace base {
namespace {
// Returns a handle to the battery interface identified by |interface_data|, or
// nullopt if the request failed. |devices| is a device information set that
// contains battery devices information, obtained with ::SetupDiGetClassDevs().
base::win::ScopedHandle GetBatteryHandle(
HDEVINFO devices,
SP_DEVICE_INTERFACE_DATA* interface_data) {
// Query size required to hold |interface_detail|.
DWORD required_size = 0;
::SetupDiGetDeviceInterfaceDetail(devices, interface_data, nullptr, 0,
&required_size, nullptr);
DWORD error = ::GetLastError();
if (error != ERROR_INSUFFICIENT_BUFFER)
return base::win::ScopedHandle();
// |interface_detail->DevicePath| is variable size.
std::vector<uint8_t> raw_buf(required_size);
auto* interface_detail =
reinterpret_cast<SP_DEVICE_INTERFACE_DETAIL_DATA*>(raw_buf.data());
interface_detail->cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);
BOOL success = ::SetupDiGetDeviceInterfaceDetail(
devices, interface_data, interface_detail, required_size, nullptr,
nullptr);
if (!success)
return base::win::ScopedHandle();
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
base::win::ScopedHandle battery(
::CreateFile(interface_detail->DevicePath, GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, nullptr));
return battery;
}
// Returns the current tag for `battery` handle, BATTERY_TAG_INVALID if there is
// no battery present in this interface or nullopt on retrieval error.
// See
// https://docs.microsoft.com/en-us/windows/win32/power/ioctl-battery-query-tag
std::optional<ULONG> GetBatteryTag(HANDLE battery) {
ULONG battery_tag = 0;
ULONG wait = 0;
DWORD bytes_returned = 0;
BOOL success = ::DeviceIoControl(
battery, IOCTL_BATTERY_QUERY_TAG, &wait, sizeof(wait), &battery_tag,
sizeof(battery_tag), &bytes_returned, nullptr);
if (!success) {
if (::GetLastError() == ERROR_FILE_NOT_FOUND) {
// No battery present in this interface.
//
// TODO(crbug.com/40756364): Change CHECK to DCHECK in October 2022 after
// verifying that there are no crash reports.
CHECK_EQ(battery_tag, static_cast<ULONG>(BATTERY_TAG_INVALID));
return battery_tag;
}
// Retrieval error.
return std::nullopt;
}
return battery_tag;
}
// Returns BATTERY_INFORMATION structure containing battery information, given
// battery handle and tag, or nullopt if the request failed. Battery handle and
// tag are obtained with GetBatteryHandle() and GetBatteryTag(), respectively.
std::optional<BATTERY_INFORMATION> GetBatteryInformation(HANDLE battery,
ULONG battery_tag) {
BATTERY_QUERY_INFORMATION query_information = {};
query_information.BatteryTag = battery_tag;
query_information.InformationLevel = BatteryInformation;
BATTERY_INFORMATION battery_information = {};
DWORD bytes_returned;
BOOL success = ::DeviceIoControl(
battery, IOCTL_BATTERY_QUERY_INFORMATION, &query_information,
sizeof(query_information), &battery_information,
sizeof(battery_information), &bytes_returned, nullptr);
if (!success)
return std::nullopt;
return battery_information;
}
// Returns the granularity of the battery discharge.
std::optional<uint32_t> GetBatteryBatteryDischargeGranularity(
HANDLE battery,
ULONG battery_tag,
ULONG current_capacity,
ULONG designed_capacity) {
BATTERY_QUERY_INFORMATION query_information = {};
query_information.BatteryTag = battery_tag;
query_information.InformationLevel = BatteryGranularityInformation;
// The battery discharge granularity can change as the level of the battery
// gets closer to zero. The documentation for `BatteryGranularityInformation`
// says that a maximum of 4 scales is possible. Each scale contains the
// granularity (in mWh) and the capacity (in mWh) at which the scale takes
// effect.
// https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-battery_reporting_scale
std::array<BATTERY_REPORTING_SCALE, 4> battery_reporting_scales;
DWORD bytes_returned = 0;
BOOL success = ::DeviceIoControl(
battery, IOCTL_BATTERY_QUERY_INFORMATION, &query_information,
sizeof(query_information), &battery_reporting_scales,
sizeof(battery_reporting_scales), &bytes_returned, nullptr);
if (!success)
return std::nullopt;
ptrdiff_t nb_elements = base::checked_cast<ptrdiff_t>(
bytes_returned / sizeof(BATTERY_REPORTING_SCALE));
if (!nb_elements)
return std::nullopt;
// The granularities are ordered from the highest capacity to the lowest
// capacity, or from the most coarse granularity to the most precise
// granularity, according to the documentation.
// Just in case, the documentation is not trusted for |max_granularity|. All
// the values are still compared to find the most coarse granularity.
DWORD max_granularity =
std::max_element(std::begin(battery_reporting_scales),
std::begin(battery_reporting_scales) + nb_elements,
[](const auto& lhs, const auto& rhs) {
return lhs.Granularity < rhs.Granularity;
})
->Granularity;
// Check if the API can be trusted, which would simplify the implementation of
// this function.
UMA_HISTOGRAM_BOOLEAN(
"Power.BatteryDischargeGranularityIsOrdered",
max_granularity == battery_reporting_scales[0].Granularity);
return max_granularity;
}
// Returns BATTERY_STATUS structure containing battery state, given battery
// handle and tag, or nullopt if the request failed. Battery handle and tag are
// obtained with GetBatteryHandle() and GetBatteryTag(), respectively.
std::optional<BATTERY_STATUS> GetBatteryStatus(HANDLE battery,
ULONG battery_tag) {
BATTERY_WAIT_STATUS wait_status = {};
wait_status.BatteryTag = battery_tag;
BATTERY_STATUS battery_status;
DWORD bytes_returned;
BOOL success = ::DeviceIoControl(
battery, IOCTL_BATTERY_QUERY_STATUS, &wait_status, sizeof(wait_status),
&battery_status, sizeof(battery_status), &bytes_returned, nullptr);
if (!success)
return std::nullopt;
return battery_status;
}
} // namespace
class BatteryLevelProviderWin : public BatteryLevelProvider {
public:
BatteryLevelProviderWin() = default;
~BatteryLevelProviderWin() override = default;
void GetBatteryState(
base::OnceCallback<void(const std::optional<BatteryState>&)> callback)
override {
// This is run on |blocking_task_runner_| since `GetBatteryStateImpl()` has
// blocking calls and can take several seconds to complete.
blocking_task_runner_->PostTaskAndReplyWithResult(
FROM_HERE,
base::BindOnce(&BatteryLevelProviderWin::GetBatteryStateImpl),
base::BindOnce(&BatteryLevelProviderWin::OnBatteryStateObtained,
weak_ptr_factory_.GetWeakPtr(), std::move(callback)));
}
private:
static std::optional<BatteryState> GetBatteryStateImpl();
void OnBatteryStateObtained(
base::OnceCallback<void(const std::optional<BatteryState>&)> callback,
const std::optional<BatteryState>& battery_state) {
std::move(callback).Run(battery_state);
}
// TaskRunner used to run blocking `GetBatteryStateImpl()` queries, sequenced
// to avoid the performance cost of concurrent calls.
scoped_refptr<base::SequencedTaskRunner> blocking_task_runner_{
base::ThreadPool::CreateSequencedTaskRunner(
{base::MayBlock(),
base::TaskShutdownBehavior::CONTINUE_ON_SHUTDOWN})};
base::WeakPtrFactory<BatteryLevelProviderWin> weak_ptr_factory_{this};
};
std::unique_ptr<BatteryLevelProvider> BatteryLevelProvider::Create() {
return std::make_unique<BatteryLevelProviderWin>();
}
// static
std::optional<BatteryLevelProvider::BatteryState>
BatteryLevelProviderWin::GetBatteryStateImpl() {
// Proactively mark as blocking to fail early, since calls below may also
// trigger ScopedBlockingCall.
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
// Battery interfaces are enumerated at every sample to detect when a new
// interface is added, and avoid holding dangling handles when a battery is
// disconnected.
base::win::ScopedDevInfo devices(::SetupDiGetClassDevs(
&GUID_DEVICE_BATTERY, 0, 0, DIGCF_PRESENT | DIGCF_DEVICEINTERFACE));
if (!devices.is_valid()) {
return std::nullopt;
}
std::vector<BatteryDetails> battery_details_list;
// The algorithm to enumerate battery devices is taken from
// https://docs.microsoft.com/en-us/windows/win32/power/enumerating-battery-devices
// Limit search to 8 batteries max. A system may have several battery slots
// and each slot may hold an actual battery.
for (DWORD device_index = 0; device_index < 8; ++device_index) {
SP_DEVICE_INTERFACE_DATA interface_data = {};
interface_data.cbSize = sizeof(interface_data);
BOOL success =
::SetupDiEnumDeviceInterfaces(devices.get(), 0, &GUID_DEVCLASS_BATTERY,
device_index, &interface_data);
if (!success) {
// Enumeration ended normally.
if (::GetLastError() == ERROR_NO_MORE_ITEMS)
break;
// Error.
return std::nullopt;
}
base::win::ScopedHandle battery =
GetBatteryHandle(devices.get(), &interface_data);
if (!battery.IsValid())
return std::nullopt;
std::optional<ULONG> battery_tag = GetBatteryTag(battery.Get());
if (!battery_tag.has_value()) {
return std::nullopt;
} else if (battery_tag.value() == BATTERY_TAG_INVALID) {
// No battery present in this interface.
continue;
}
auto battery_information =
GetBatteryInformation(battery.Get(), *battery_tag);
if (!battery_information.has_value()) {
return std::nullopt;
}
auto battery_status = GetBatteryStatus(battery.Get(), *battery_tag);
if (!battery_status.has_value()) {
return std::nullopt;
}
std::optional<uint32_t> battery_discharge_granularity =
GetBatteryBatteryDischargeGranularity(
battery.Get(), *battery_tag, battery_status->Capacity,
battery_information->DesignedCapacity);
battery_details_list.push_back(BatteryDetails(
{.is_external_power_connected =
!!(battery_status->PowerState & BATTERY_POWER_ON_LINE),
.current_capacity = battery_status->Capacity,
.full_charged_capacity = battery_information->FullChargedCapacity,
.charge_unit =
((battery_information->Capabilities & BATTERY_CAPACITY_RELATIVE)
? BatteryLevelUnit::kRelative
: BatteryLevelUnit::kMWh),
.battery_discharge_granularity = battery_discharge_granularity}));
}
return MakeBatteryState(battery_details_list);
}
} // namespace base