/* * copyright (c) 2006 Michael Niedermayer <[email protected]> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * common internal and external API header */ #ifndef AVUTIL_COMMON_H #define AVUTIL_COMMON_H #if defined(__cplusplus) && !defined(__STDC_CONSTANT_MACROS) && !defined(UINT64_C) #error missing -D__STDC_CONSTANT_MACROS / #define __STDC_CONSTANT_MACROS #endif #include <errno.h> #include <inttypes.h> #include <limits.h> #include <math.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "attributes.h" #include "error.h" #include "macros.h" #ifdef HAVE_AV_CONFIG_H # include "config.h" # include "intmath.h" # include "internal.h" #else # include "mem.h" #endif /* HAVE_AV_CONFIG_H */ //rounded division & shift #define RSHIFT(a,b) … /* assume b>0 */ #define ROUNDED_DIV(a,b) … /* Fast a/(1<<b) rounded toward +inf. Assume a>=0 and b>=0 */ #define AV_CEIL_RSHIFT(a,b) … /* Backwards compat. */ #define FF_CEIL_RSHIFT … #define FFUDIV(a,b) … #define FFUMOD(a,b) … /** * Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they * are not representable as absolute values of their type. This is the same * as with *abs() * @see FFNABS() */ #define FFABS(a) … #define FFSIGN(a) … /** * Negative Absolute value. * this works for all integers of all types. * As with many macros, this evaluates its argument twice, it thus must not have * a sideeffect, that is FFNABS(x++) has undefined behavior. */ #define FFNABS(a) … /** * Unsigned Absolute value. * This takes the absolute value of a signed int and returns it as a unsigned. * This also works with INT_MIN which would otherwise not be representable * As with many macros, this evaluates its argument twice. */ #define FFABSU(a) … #define FFABS64U(a) … /* misc math functions */ #ifndef av_ceil_log2 #define av_ceil_log2 … #endif #ifndef av_clip #define av_clip … #endif #ifndef av_clip64 #define av_clip64 … #endif #ifndef av_clip_uint8 #define av_clip_uint8 … #endif #ifndef av_clip_int8 #define av_clip_int8 … #endif #ifndef av_clip_uint16 #define av_clip_uint16 … #endif #ifndef av_clip_int16 #define av_clip_int16 … #endif #ifndef av_clipl_int32 #define av_clipl_int32 … #endif #ifndef av_clip_intp2 #define av_clip_intp2 … #endif #ifndef av_clip_uintp2 #define av_clip_uintp2 … #endif #ifndef av_mod_uintp2 #define av_mod_uintp2 … #endif #ifndef av_sat_add32 #define av_sat_add32 … #endif #ifndef av_sat_dadd32 #define av_sat_dadd32 … #endif #ifndef av_sat_sub32 #define av_sat_sub32 … #endif #ifndef av_sat_dsub32 #define av_sat_dsub32 … #endif #ifndef av_sat_add64 #define av_sat_add64 … #endif #ifndef av_sat_sub64 #define av_sat_sub64 … #endif #ifndef av_clipf #define av_clipf … #endif #ifndef av_clipd #define av_clipd … #endif #ifndef av_popcount #define av_popcount … #endif #ifndef av_popcount64 #define av_popcount64 … #endif #ifndef av_parity #define av_parity … #endif #ifndef av_log2 av_const int av_log2(unsigned v); #endif #ifndef av_log2_16bit av_const int av_log2_16bit(unsigned v); #endif /** * Clip a signed integer value into the amin-amax range. * @param a value to clip * @param amin minimum value of the clip range * @param amax maximum value of the clip range * @return clipped value */ static av_always_inline av_const int av_clip_c(int a, int amin, int amax) { … } /** * Clip a signed 64bit integer value into the amin-amax range. * @param a value to clip * @param amin minimum value of the clip range * @param amax maximum value of the clip range * @return clipped value */ static av_always_inline av_const int64_t av_clip64_c(int64_t a, int64_t amin, int64_t amax) { … } /** * Clip a signed integer value into the 0-255 range. * @param a value to clip * @return clipped value */ static av_always_inline av_const uint8_t av_clip_uint8_c(int a) { … } /** * Clip a signed integer value into the -128,127 range. * @param a value to clip * @return clipped value */ static av_always_inline av_const int8_t av_clip_int8_c(int a) { … } /** * Clip a signed integer value into the 0-65535 range. * @param a value to clip * @return clipped value */ static av_always_inline av_const uint16_t av_clip_uint16_c(int a) { … } /** * Clip a signed integer value into the -32768,32767 range. * @param a value to clip * @return clipped value */ static av_always_inline av_const int16_t av_clip_int16_c(int a) { … } /** * Clip a signed 64-bit integer value into the -2147483648,2147483647 range. * @param a value to clip * @return clipped value */ static av_always_inline av_const int32_t av_clipl_int32_c(int64_t a) { … } /** * Clip a signed integer into the -(2^p),(2^p-1) range. * @param a value to clip * @param p bit position to clip at * @return clipped value */ static av_always_inline av_const int av_clip_intp2_c(int a, int p) { … } /** * Clip a signed integer to an unsigned power of two range. * @param a value to clip * @param p bit position to clip at * @return clipped value */ static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p) { … } /** * Clear high bits from an unsigned integer starting with specific bit position * @param a value to clip * @param p bit position to clip at * @return clipped value */ static av_always_inline av_const unsigned av_mod_uintp2_c(unsigned a, unsigned p) { … } /** * Add two signed 32-bit values with saturation. * * @param a one value * @param b another value * @return sum with signed saturation */ static av_always_inline int av_sat_add32_c(int a, int b) { … } /** * Add a doubled value to another value with saturation at both stages. * * @param a first value * @param b value doubled and added to a * @return sum sat(a + sat(2*b)) with signed saturation */ static av_always_inline int av_sat_dadd32_c(int a, int b) { … } /** * Subtract two signed 32-bit values with saturation. * * @param a one value * @param b another value * @return difference with signed saturation */ static av_always_inline int av_sat_sub32_c(int a, int b) { … } /** * Subtract a doubled value from another value with saturation at both stages. * * @param a first value * @param b value doubled and subtracted from a * @return difference sat(a - sat(2*b)) with signed saturation */ static av_always_inline int av_sat_dsub32_c(int a, int b) { … } /** * Add two signed 64-bit values with saturation. * * @param a one value * @param b another value * @return sum with signed saturation */ static av_always_inline int64_t av_sat_add64_c(int64_t a, int64_t b) { … } /** * Subtract two signed 64-bit values with saturation. * * @param a one value * @param b another value * @return difference with signed saturation */ static av_always_inline int64_t av_sat_sub64_c(int64_t a, int64_t b) { … } /** * Clip a float value into the amin-amax range. * If a is nan or -inf amin will be returned. * If a is +inf amax will be returned. * @param a value to clip * @param amin minimum value of the clip range * @param amax maximum value of the clip range * @return clipped value */ static av_always_inline av_const float av_clipf_c(float a, float amin, float amax) { … } /** * Clip a double value into the amin-amax range. * If a is nan or -inf amin will be returned. * If a is +inf amax will be returned. * @param a value to clip * @param amin minimum value of the clip range * @param amax maximum value of the clip range * @return clipped value */ static av_always_inline av_const double av_clipd_c(double a, double amin, double amax) { … } /** Compute ceil(log2(x)). * @param x value used to compute ceil(log2(x)) * @return computed ceiling of log2(x) */ static av_always_inline av_const int av_ceil_log2_c(int x) { … } /** * Count number of bits set to one in x * @param x value to count bits of * @return the number of bits set to one in x */ static av_always_inline av_const int av_popcount_c(uint32_t x) { … } /** * Count number of bits set to one in x * @param x value to count bits of * @return the number of bits set to one in x */ static av_always_inline av_const int av_popcount64_c(uint64_t x) { … } static av_always_inline av_const int av_parity_c(uint32_t v) { … } /** * Convert a UTF-8 character (up to 4 bytes) to its 32-bit UCS-4 encoded form. * * @param val Output value, must be an lvalue of type uint32_t. * @param GET_BYTE Expression reading one byte from the input. * Evaluated up to 7 times (4 for the currently * assigned Unicode range). With a memory buffer * input, this could be *ptr++, or if you want to make sure * that *ptr stops at the end of a NULL terminated string then * *ptr ? *ptr++ : 0 * @param ERROR Expression to be evaluated on invalid input, * typically a goto statement. * * @warning ERROR should not contain a loop control statement which * could interact with the internal while loop, and should force an * exit from the macro code (e.g. through a goto or a return) in order * to prevent undefined results. */ #define GET_UTF8(val, GET_BYTE, ERROR) … /** * Convert a UTF-16 character (2 or 4 bytes) to its 32-bit UCS-4 encoded form. * * @param val Output value, must be an lvalue of type uint32_t. * @param GET_16BIT Expression returning two bytes of UTF-16 data converted * to native byte order. Evaluated one or two times. * @param ERROR Expression to be evaluated on invalid input, * typically a goto statement. */ #define GET_UTF16(val, GET_16BIT, ERROR) …\ /** * @def PUT_UTF8(val, tmp, PUT_BYTE) * Convert a 32-bit Unicode character to its UTF-8 encoded form (up to 4 bytes long). * @param val is an input-only argument and should be of type uint32_t. It holds * a UCS-4 encoded Unicode character that is to be converted to UTF-8. If * val is given as a function it is executed only once. * @param tmp is a temporary variable and should be of type uint8_t. It * represents an intermediate value during conversion that is to be * output by PUT_BYTE. * @param PUT_BYTE writes the converted UTF-8 bytes to any proper destination. * It could be a function or a statement, and uses tmp as the input byte. * For example, PUT_BYTE could be "*output++ = tmp;" PUT_BYTE will be * executed up to 4 times for values in the valid UTF-8 range and up to * 7 times in the general case, depending on the length of the converted * Unicode character. */ #define PUT_UTF8(val, tmp, PUT_BYTE) … /** * @def PUT_UTF16(val, tmp, PUT_16BIT) * Convert a 32-bit Unicode character to its UTF-16 encoded form (2 or 4 bytes). * @param val is an input-only argument and should be of type uint32_t. It holds * a UCS-4 encoded Unicode character that is to be converted to UTF-16. If * val is given as a function it is executed only once. * @param tmp is a temporary variable and should be of type uint16_t. It * represents an intermediate value during conversion that is to be * output by PUT_16BIT. * @param PUT_16BIT writes the converted UTF-16 data to any proper destination * in desired endianness. It could be a function or a statement, and uses tmp * as the input byte. For example, PUT_BYTE could be "*output++ = tmp;" * PUT_BYTE will be executed 1 or 2 times depending on input character. */ #define PUT_UTF16(val, tmp, PUT_16BIT) …\ #endif /* AVUTIL_COMMON_H */