// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef DOUBLE_CONVERSION_UTILS_H_ #define DOUBLE_CONVERSION_UTILS_H_ #include <cstdlib> #include <cstring> #include <cassert> #ifndef DOUBLE_CONVERSION_ASSERT #define DOUBLE_CONVERSION_ASSERT(condition) … #endif #ifndef DOUBLE_CONVERSION_UNIMPLEMENTED #define DOUBLE_CONVERSION_UNIMPLEMENTED() … #endif #ifndef DOUBLE_CONVERSION_NO_RETURN #ifdef _MSC_VER #define DOUBLE_CONVERSION_NO_RETURN … #else #define DOUBLE_CONVERSION_NO_RETURN … #endif #endif #ifndef DOUBLE_CONVERSION_UNREACHABLE #ifdef _MSC_VER void DOUBLE_CONVERSION_NO_RETURN abort_noreturn(); inline void abort_noreturn() { abort(); } #define DOUBLE_CONVERSION_UNREACHABLE … #else #define DOUBLE_CONVERSION_UNREACHABLE() … #endif #endif // Not all compilers support __has_attribute and combining a check for both // ifdef and __has_attribute on the same preprocessor line isn't portable. #ifdef __has_attribute #define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) … #else #define DOUBLE_CONVERSION_HAS_ATTRIBUTE … #endif #ifndef DOUBLE_CONVERSION_UNUSED #if DOUBLE_CONVERSION_HAS_ATTRIBUTE(unused) #define DOUBLE_CONVERSION_UNUSED … #else #define DOUBLE_CONVERSION_UNUSED #endif #endif #if DOUBLE_CONVERSION_HAS_ATTRIBUTE(uninitialized) #define DOUBLE_CONVERSION_STACK_UNINITIALIZED … #else #define DOUBLE_CONVERSION_STACK_UNINITIALIZED #endif // Double operations detection based on target architecture. // Linux uses a 80bit wide floating point stack on x86. This induces double // rounding, which in turn leads to wrong results. // An easy way to test if the floating-point operations are correct is to // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then // the result is equal to 89255e-22. // The best way to test this, is to create a division-function and to compare // the output of the division with the expected result. (Inlining must be // disabled.) // On Linux,x86 89255e-22 != Div_double(89255.0/1e22) // // For example: /* // -- in div.c double Div_double(double x, double y) { return x / y; } // -- in main.c double Div_double(double x, double y); // Forward declaration. int main(int argc, char** argv) { return Div_double(89255.0, 1e22) == 89255e-22; } */ // Run as follows ./main || echo "correct" // // If it prints "correct" then the architecture should be here, in the "correct" section. #if defined(_M_X64) || defined(__x86_64__) || \ defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \ defined(__hppa__) || defined(__ia64__) || \ defined(__mips__) || \ defined(__loongarch__) || \ defined(__nios2__) || defined(__ghs) || \ defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \ defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \ defined(__sparc__) || defined(__sparc) || defined(__s390__) || \ defined(__SH4__) || defined(__alpha__) || \ defined(_MIPS_ARCH_MIPS32R2) || defined(__ARMEB__) ||\ defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \ defined(__riscv) || defined(__e2k__) || \ defined(__or1k__) || defined(__arc__) || \ defined(__microblaze__) || defined(__XTENSA__) || \ defined(__EMSCRIPTEN__) || defined(__wasm32__) #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS … #elif defined(__mc68000__) || \ defined(__pnacl__) || defined(__native_client__) #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS #elif defined(_M_IX86) || defined(__i386__) || defined(__i386) #if defined(_WIN32) // Windows uses a 64bit wide floating point stack. #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS … #else #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS #endif // _WIN32 #else #error Target architecture was not detected as supported by Double-Conversion. #endif #if defined(_WIN32) && !defined(__MINGW32__) typedef signed char int8_t; typedef unsigned char uint8_t; typedef short int16_t; // NOLINT typedef unsigned short uint16_t; // NOLINT typedef int int32_t; typedef unsigned int uint32_t; typedef __int64 int64_t; typedef unsigned __int64 uint64_t; // intptr_t and friends are defined in crtdefs.h through stdio.h. #else #include <stdint.h> #endif uc16; // The following macro works on both 32 and 64-bit platforms. // Usage: instead of writing 0x1234567890123456 // write DOUBLE_CONVERSION_UINT64_2PART_C(0x12345678,90123456); #define DOUBLE_CONVERSION_UINT64_2PART_C(a, b) … // The expression DOUBLE_CONVERSION_ARRAY_SIZE(a) is a compile-time constant of type // size_t which represents the number of elements of the given // array. You should only use DOUBLE_CONVERSION_ARRAY_SIZE on statically allocated // arrays. #ifndef DOUBLE_CONVERSION_ARRAY_SIZE #define DOUBLE_CONVERSION_ARRAY_SIZE(a) … #endif // A macro to disallow the evil copy constructor and operator= functions // This should be used in the private: declarations for a class #ifndef DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN #define DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName) … #endif // A macro to disallow all the implicit constructors, namely the // default constructor, copy constructor and operator= functions. // // This should be used in the private: declarations for a class // that wants to prevent anyone from instantiating it. This is // especially useful for classes containing only static methods. #ifndef DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS #define DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) … #endif namespace double_conversion { inline int StrLength(const char* string) { … } // This is a simplified version of V8's Vector class. template <typename T> class Vector { … }; // Helper class for building result strings in a character buffer. The // purpose of the class is to use safe operations that checks the // buffer bounds on all operations in debug mode. class StringBuilder { … }; // The type-based aliasing rule allows the compiler to assume that pointers of // different types (for some definition of different) never alias each other. // Thus the following code does not work: // // float f = foo(); // int fbits = *(int*)(&f); // // The compiler 'knows' that the int pointer can't refer to f since the types // don't match, so the compiler may cache f in a register, leaving random data // in fbits. Using C++ style casts makes no difference, however a pointer to // char data is assumed to alias any other pointer. This is the 'memcpy // exception'. // // Bit_cast uses the memcpy exception to move the bits from a variable of one // type of a variable of another type. Of course the end result is likely to // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) // will completely optimize BitCast away. // // There is an additional use for BitCast. // Recent gccs will warn when they see casts that may result in breakage due to // the type-based aliasing rule. If you have checked that there is no breakage // you can use BitCast to cast one pointer type to another. This confuses gcc // enough that it can no longer see that you have cast one pointer type to // another thus avoiding the warning. template <class Dest, class Source> Dest BitCast(const Source& source) { … } template <class Dest, class Source> Dest BitCast(Source* source) { … } } // namespace double_conversion #endif // DOUBLE_CONVERSION_UTILS_H_