// Copyright 2015 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_TRACE_EVENT_COMMON_TRACE_EVENT_COMMON_H_ #define BASE_TRACE_EVENT_COMMON_TRACE_EVENT_COMMON_H_ // Trace events are for tracking application performance and resource usage. // Macros are provided to track: // Begin and end of function calls // Counters // // Events are issued against categories. Whereas LOG's // categories are statically defined, TRACE categories are created // implicitly with a string. For example: // TRACE_EVENT_INSTANT0("MY_SUBSYSTEM", "SomeImportantEvent", // TRACE_EVENT_SCOPE_THREAD) // // It is often the case that one trace may belong in multiple categories at the // same time. The first argument to the trace can be a comma-separated list of // categories, forming a category group, like: // // TRACE_EVENT_INSTANT0("input,views", "OnMouseOver", TRACE_EVENT_SCOPE_THREAD) // // We can enable/disable tracing of OnMouseOver by enabling/disabling either // category. // // Events can be INSTANT, or can be pairs of BEGIN and END in the same scope: // TRACE_EVENT_BEGIN0("MY_SUBSYSTEM", "SomethingCostly") // doSomethingCostly() // TRACE_EVENT_END0("MY_SUBSYSTEM", "SomethingCostly") // Note: our tools can't always determine the correct BEGIN/END pairs unless // these are used in the same scope. Use ASYNC_BEGIN/ASYNC_END macros if you // need them to be in separate scopes. // // A common use case is to trace entire function scopes. This // issues a trace BEGIN and END automatically: // void doSomethingCostly() { // TRACE_EVENT0("MY_SUBSYSTEM", "doSomethingCostly"); // ... // } // // Additional parameters can be associated with an event: // void doSomethingCostly2(int howMuch) { // TRACE_EVENT1("MY_SUBSYSTEM", "doSomethingCostly", // "howMuch", howMuch); // ... // } // // The trace system will automatically add to this information the // current process id, thread id, and a timestamp in microseconds. // // To trace an asynchronous procedure such as an IPC send/receive, use // NESTABLE_ASYNC_BEGIN and NESTABLE_ASYNC_END: // [single threaded sender code] // static int send_count = 0; // ++send_count; // TRACE_EVENT_NESTABLE_ASYNC_BEGIN0( // "ipc", "message", TRACE_ID_WITH_SCOPE("message", send_count)); // Send(new MyMessage(send_count)); // [receive code] // void OnMyMessage(send_count) { // TRACE_NESTABLE_EVENT_ASYNC_END0( // "ipc", "message", TRACE_ID_WITH_SCOPE("message", send_count)); // } // The third parameter is a unique ID to match NESTABLE_ASYNC_BEGIN/ASYNC_END // pairs. NESTABLE_ASYNC_BEGIN and ASYNC_END can occur on any thread of any // traced process. // Pointers can be used for the ID parameter, and they will // be annotated internally so that the same pointer on two different processes // will not match. For example: // class MyTracedClass { // public: // MyTracedClass() { // TRACE_EVENT_NESTABLE_ASYNC_BEGIN0("category", "MyTracedClass", // TRACE_ID_LOCAL(this)); // } // ~MyTracedClass() { // TRACE_EVENT_NESTABLE_ASYNC_END0("category", "MyTracedClass", // TRACE_ID_LOCAL(this)); // } // } // // Trace event also supports counters, which is a way to track a quantity // as it varies over time. Counters are created with the following macro: // TRACE_COUNTER1("MY_SUBSYSTEM", "myCounter", g_myCounterValue); // // Counters are process-specific. The macro itself can be issued from any // thread, however. // // Sometimes, you want to track two counters at once. You can do this with two // counter macros: // TRACE_COUNTER1("MY_SUBSYSTEM", "myCounter0", g_myCounterValue[0]); // TRACE_COUNTER1("MY_SUBSYSTEM", "myCounter1", g_myCounterValue[1]); // Or you can do it with a combined macro: // TRACE_COUNTER2("MY_SUBSYSTEM", "myCounter", // "bytesPinned", g_myCounterValue[0], // "bytesAllocated", g_myCounterValue[1]); // This indicates to the tracing UI that these counters should be displayed // in a single graph, as a summed area chart. // // Since counters are in a global namespace, you may want to disambiguate with a // unique ID, by using the TRACE_COUNTER_ID* variations. // // By default, trace collection is compiled in, but turned off at runtime. // Collecting trace data is the responsibility of the embedding // application. In Chrome's case, navigating to about:tracing will turn on // tracing and display data collected across all active processes. // // // Memory scoping note: // Tracing copies the pointers, not the string content, of the strings passed // in for category_group, name, and arg_names. Thus, the following code will // cause problems: // char* str = strdup("importantName"); // TRACE_EVENT_INSTANT0("SUBSYSTEM", str); // BAD! // free(str); // Trace system now has dangling pointer // // To avoid this issue with the |name| and |arg_name| parameters, use the // TRACE_EVENT_COPY_XXX overloads of the macros at additional runtime overhead. // Notes: The category must always be in a long-lived char* (i.e. static const). // The |arg_values|, when used, are always deep copied with the _COPY // macros. // // When are string argument values copied: // const char* arg_values are only referenced by default: // TRACE_EVENT1("category", "name", // "arg1", "literal string is only referenced"); // Use TRACE_STR_COPY to force copying of a const char*: // TRACE_EVENT1("category", "name", // "arg1", TRACE_STR_COPY("string will be copied")); // std::string arg_values are always copied: // TRACE_EVENT1("category", "name", // "arg1", std::string("string will be copied")); // // // Convertable notes: // Converting a large data type to a string can be costly. To help with this, // the trace framework provides an interface ConvertableToTraceFormat. If you // inherit from it and implement the AppendAsTraceFormat method the trace // framework will call back to your object to convert a trace output time. This // means, if the category for the event is disabled, the conversion will not // happen. // // class MyData : public base::trace_event::ConvertableToTraceFormat { // public: // MyData() {} // // MyData(const MyData&) = delete; // MyData& operator=(const MyData&) = delete; // // void AppendAsTraceFormat(std::string* out) const override { // out->append("{\"foo\":1}"); // } // private: // ~MyData() override {} // }; // // TRACE_EVENT1("foo", "bar", "data", // std::unique_ptr<ConvertableToTraceFormat>(new MyData())); // // The trace framework will take ownership if the passed pointer and it will // be free'd when the trace buffer is flushed. // // Note, we only do the conversion when the buffer is flushed, so the provided // data object should not be modified after it's passed to the trace framework. // // // Thread Safety: // A thread safe singleton and mutex are used for thread safety. Category // enabled flags are used to limit the performance impact when the system // is not enabled. // // TRACE_EVENT macros first cache a pointer to a category. The categories are // statically allocated and safe at all times, even after exit. Fetching a // category is protected by the TraceLog::lock_. Multiple threads initializing // the static variable is safe, as they will be serialized by the lock and // multiple calls will return the same pointer to the category. // // Then the category_group_enabled flag is checked. This is a unsigned char, and // not intended to be multithread safe. It optimizes access to AddTraceEvent // which is threadsafe internally via TraceLog::lock_. The enabled flag may // cause some threads to incorrectly call or skip calling AddTraceEvent near // the time of the system being enabled or disabled. This is acceptable as // we tolerate some data loss while the system is being enabled/disabled and // because AddTraceEvent is threadsafe internally and checks the enabled state // again under lock. // // Without the use of these static category pointers and enabled flags all // trace points would carry a significant performance cost of acquiring a lock // and resolving the category. //////////////////////////////////////////////////////////////////////////////// // Perfetto trace macros #include "base/threading/platform_thread.h" #include "base/time/time.h" #include "build/build_config.h" #if BUILDFLAG(ENABLE_BASE_TRACING) // Enable legacy trace event macros (e.g., TRACE_EVENT{0,1,2}). #define PERFETTO_ENABLE_LEGACY_TRACE_EVENTS … // Macros for reading the current trace time (bypassing any virtual time // overrides). #define TRACE_TIME_TICKS_NOW() … #define TRACE_TIME_NOW() … // Implementation detail: trace event macros create temporary variables // to keep instrumentation overhead low. These macros give each temporary // variable a unique name based on the line number to prevent name collisions. #define INTERNAL_TRACE_EVENT_UID(name_prefix) … // Declare debug annotation converters for base time types, so they can be // passed as trace event arguments. // TODO(skyostil): Serialize timestamps using perfetto::TracedValue instead. namespace perfetto { namespace protos { namespace pbzero { class DebugAnnotation; } // namespace pbzero } // namespace protos namespace internal { void BASE_EXPORT WriteDebugAnnotation(protos::pbzero::DebugAnnotation* annotation, ::base::TimeTicks); void BASE_EXPORT WriteDebugAnnotation(protos::pbzero::DebugAnnotation* annotation, ::base::Time); } // namespace internal } // namespace perfetto // Pull in the tracing macro definitions from Perfetto. #include "third_party/perfetto/include/perfetto/tracing/track_event.h" // IWYU pragma: export #include "third_party/perfetto/include/perfetto/tracing/track_event_legacy.h" // IWYU pragma: export namespace perfetto { namespace legacy { template <> perfetto::ThreadTrack BASE_EXPORT ConvertThreadId(const ::base::PlatformThreadId& thread); #if BUILDFLAG(IS_WIN) template <> perfetto::ThreadTrack BASE_EXPORT ConvertThreadId(const int& thread); #endif // BUILDFLAG(IS_WIN) } // namespace legacy template <> struct BASE_EXPORT TraceTimestampTraits<::base::TimeTicks> { … }; } // namespace perfetto #else // !BUILDFLAG(ENABLE_BASE_TRACING) // This macro is still used in some components even when base tracing is // disabled. // TODO(crbug/336718643): Make sure no code affected by // enable_base_tracing=false includes this file directly, then move the define // to trace_event_stub.h. #define TRACE_DISABLED_BY_DEFAULT … #endif // !BUILDFLAG(ENABLE_BASE_TRACING) #endif // BASE_TRACE_EVENT_COMMON_TRACE_EVENT_COMMON_H_