chromium/third_party/webrtc/rtc_base/weak_ptr.h

/*
 *  Copyright 2016 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#ifndef RTC_BASE_WEAK_PTR_H_
#define RTC_BASE_WEAK_PTR_H_

#include <memory>
#include <utility>

#include "api/scoped_refptr.h"
#include "api/sequence_checker.h"
#include "rtc_base/checks.h"
#include "rtc_base/ref_count.h"
#include "rtc_base/ref_counted_object.h"
#include "rtc_base/system/no_unique_address.h"
#include "rtc_base/thread_annotations.h"

// The implementation is borrowed from chromium except that it does not
// implement SupportsWeakPtr.

// Weak pointers are pointers to an object that do not affect its lifetime,
// and which may be invalidated (i.e. reset to nullptr) by the object, or its
// owner, at any time, most commonly when the object is about to be deleted.

// Weak pointers are useful when an object needs to be accessed safely by one
// or more objects other than its owner, and those callers can cope with the
// object vanishing and e.g. tasks posted to it being silently dropped.
// Reference-counting such an object would complicate the ownership graph and
// make it harder to reason about the object's lifetime.

// EXAMPLE:
//
//  class Controller {
//   public:
//    Controller() : weak_factory_(this) {}
//    void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
//    void WorkComplete(const Result& result) { ... }
//   private:
//    // Member variables should appear before the WeakPtrFactory, to ensure
//    // that any WeakPtrs to Controller are invalidated before its members
//    // variable's destructors are executed, rendering them invalid.
//    WeakPtrFactory<Controller> weak_factory_;
//  };
//
//  class Worker {
//   public:
//    static void StartNew(const WeakPtr<Controller>& controller) {
//      Worker* worker = new Worker(controller);
//      // Kick off asynchronous processing...
//    }
//   private:
//    Worker(const WeakPtr<Controller>& controller)
//        : controller_(controller) {}
//    void DidCompleteAsynchronousProcessing(const Result& result) {
//      if (controller_)
//        controller_->WorkComplete(result);
//    }
//    WeakPtr<Controller> controller_;
//  };
//
// With this implementation a caller may use SpawnWorker() to dispatch multiple
// Workers and subsequently delete the Controller, without waiting for all
// Workers to have completed.

// ------------------------- IMPORTANT: Thread-safety -------------------------

// Weak pointers may be passed safely between threads, but must always be
// dereferenced and invalidated on the same TaskQueue or thread, otherwise
// checking the pointer would be racey.
//
// To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
// is dereferenced, the factory and its WeakPtrs become bound to the calling
// TaskQueue/thread, and cannot be dereferenced or
// invalidated on any other TaskQueue/thread. Bound WeakPtrs can still be handed
// off to other TaskQueues, e.g. to use to post tasks back to object on the
// bound sequence.
//
// Thus, at least one WeakPtr object must exist and have been dereferenced on
// the correct thread to enforce that other WeakPtr objects will enforce they
// are used on the desired thread.

namespace rtc {

namespace internal {

class WeakReference {};

class WeakReferenceOwner {};

// This class simplifies the implementation of WeakPtr's type conversion
// constructor by avoiding the need for a public accessor for ref_.  A
// WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
// base class gives us a way to access ref_ in a protected fashion.
class WeakPtrBase {};

}  // namespace internal

template <typename T>
class WeakPtrFactory;

template <typename T>
class WeakPtr : public internal::WeakPtrBase {};

// Allow callers to compare WeakPtrs against nullptr to test validity.
template <class T>
bool operator!=(const WeakPtr<T>& weak_ptr, std::nullptr_t) {}
template <class T>
bool operator!=(std::nullptr_t, const WeakPtr<T>& weak_ptr) {}
template <class T>
bool operator==(const WeakPtr<T>& weak_ptr, std::nullptr_t) {}
template <class T>
bool operator==(std::nullptr_t, const WeakPtr<T>& weak_ptr) {}

// A class may be composed of a WeakPtrFactory and thereby
// control how it exposes weak pointers to itself.  This is helpful if you only
// need weak pointers within the implementation of a class.  This class is also
// useful when working with primitive types.  For example, you could have a
// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.

// Note that GetWeakPtr must be called on one and only one TaskQueue or thread
// and the WeakPtr must only be dereferenced and invalidated on that same
// TaskQueue/thread. A WeakPtr instance can be copied and posted to other
// sequences though as long as it is not dereferenced (WeakPtr<T>::get()).
template <class T>
class WeakPtrFactory {};

}  // namespace rtc

#endif  // RTC_BASE_WEAK_PTR_H_