/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkGeometry_DEFINED #define SkGeometry_DEFINED #include "include/core/SkPoint.h" #include "include/core/SkScalar.h" #include "include/core/SkTypes.h" #include "include/private/base/SkFloatingPoint.h" #include "src/base/SkVx.h" #include <cstring> class SkMatrix; struct SkRect; static inline skvx::float2 from_point(const SkPoint& point) { … } static inline SkPoint to_point(const skvx::float2& x) { … } static skvx::float2 times_2(const skvx::float2& value) { … } /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the equation. */ int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); /** Measures the angle between two vectors, in the range [0, pi]. */ float SkMeasureAngleBetweenVectors(SkVector, SkVector); /** Returns a new, arbitrarily scaled vector that bisects the given vectors. The returned bisector will always point toward the interior of the provided vectors. */ SkVector SkFindBisector(SkVector, SkVector); /////////////////////////////////////////////////////////////////////////////// SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t); SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t); /** Set pt to the point on the src quadratic specified by t. t must be 0 <= t <= 1.0 */ void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr); /** Given a src quadratic bezier, chop it at the specified t value, where 0 < t < 1, and return the two new quadratics in dst: dst[0..2] and dst[2..4] */ void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); /** Given a src quadratic bezier, chop it at the specified t == 1/2, The new quads are returned in dst[0..2] and dst[2..4] */ void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); /** Measures the rotation of the given quadratic curve in radians. Rotation is perhaps easiest described via a driving analogy: If you drive your car along the curve from p0 to p2, then by the time you arrive at p2, how many radians will your car have rotated? For a quadratic this is the same as the vector inside the tangents at the endpoints. Quadratics can have rotations in the range [0, pi]. */ inline float SkMeasureQuadRotation(const SkPoint pts[3]) { … } /** Given a src quadratic bezier, returns the T value whose tangent angle is halfway between the tangents at p0 and p3. */ float SkFindQuadMidTangent(const SkPoint src[3]); /** Given a src quadratic bezier, chop it at the tangent whose angle is halfway between the tangents at p0 and p2. The new quads are returned in dst[0..2] and dst[2..4]. */ inline void SkChopQuadAtMidTangent(const SkPoint src[3], SkPoint dst[5]) { … } /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look for extrema, and return the number of t-values that are found that represent these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the function returns 0. Returned count tValues[] 0 ignored 1 0 < tValues[0] < 1 */ int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that the resulting beziers are monotonic in Y. This is called by the scan converter. Depending on what is returned, dst[] is treated as follows 0 dst[0..2] is the original quad 1 dst[0..2] and dst[2..4] are the two new quads */ int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]); /** Given 3 points on a quadratic bezier, if the point of maximum curvature exists on the segment, returns the t value for this point along the curve. Otherwise it will return a value of 0. */ SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]); /** Given 3 points on a quadratic bezier, divide it into 2 quadratics if the point of maximum curvature exists on the quad segment. Depending on what is returned, dst[] is treated as follows 1 dst[0..2] is the original quad 2 dst[0..2] and dst[2..4] are the two new quads If dst == null, it is ignored and only the count is returned. */ int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); /** Given 3 points on a quadratic bezier, use degree elevation to convert it into the cubic fitting the same curve. The new cubic curve is returned in dst[0..3]. */ void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]); /////////////////////////////////////////////////////////////////////////////// /** Set pt to the point on the src cubic specified by t. t must be 0 <= t <= 1.0 */ void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, SkVector* tangentOrNull, SkVector* curvatureOrNull); /** Given a src cubic bezier, chop it at the specified t value, where 0 <= t <= 1, and return the two new cubics in dst: dst[0..3] and dst[3..6] */ void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); /** Given a src cubic bezier, chop it at the specified t0 and t1 values, where 0 <= t0 <= t1 <= 1, and return the three new cubics in dst: dst[0..3], dst[3..6], and dst[6..9] */ void SkChopCubicAt(const SkPoint src[4], SkPoint dst[10], float t0, float t1); /** Given a src cubic bezier, chop it at the specified t values, where 0 <= t0 <= t1 <= ... <= 1, and return the new cubics in dst: dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)] */ void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[], int t_count); /** Given a src cubic bezier, chop it at the specified t == 1/2, The new cubics are returned in dst[0..3] and dst[3..6] */ void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); /** Given a cubic curve with no inflection points, this method measures the rotation in radians. Rotation is perhaps easiest described via a driving analogy: If you drive your car along the curve from p0 to p3, then by the time you arrive at p3, how many radians will your car have rotated? This is not quite the same as the vector inside the tangents at the endpoints, even without inflection, because the curve might rotate around the outside of the tangents (>= 180 degrees) or the inside (<= 180 degrees). Cubics can have rotations in the range [0, 2*pi]. NOTE: The caller must either call SkChopCubicAtInflections or otherwise prove that the provided cubic has no inflection points prior to calling this method. */ float SkMeasureNonInflectCubicRotation(const SkPoint[4]); /** Given a src cubic bezier, returns the T value whose tangent angle is halfway between the tangents at p0 and p3. */ float SkFindCubicMidTangent(const SkPoint src[4]); /** Given a src cubic bezier, chop it at the tangent whose angle is halfway between the tangents at p0 and p3. The new cubics are returned in dst[0..3] and dst[3..6]. NOTE: 0- and 360-degree flat lines don't have single points of midtangent. (tangent == midtangent at every point on these curves except the cusp points.) If this is the case then we simply chop at a point which guarantees neither side rotates more than 180 degrees. */ inline void SkChopCubicAtMidTangent(const SkPoint src[4], SkPoint dst[7]) { … } /** Given the 4 coefficients for a cubic bezier (either X or Y values), look for extrema, and return the number of t-values that are found that represent these extrema. If the cubic has no extrema betwee (0..1) exclusive, the function returns 0. Returned count tValues[] 0 ignored 1 0 < tValues[0] < 1 2 0 < tValues[0] < tValues[1] < 1 */ int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]); /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that the resulting beziers are monotonic in Y. This is called by the scan converter. Depending on what is returned, dst[] is treated as follows 0 dst[0..3] is the original cubic 1 dst[0..3] and dst[3..6] are the two new cubics 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics If dst == null, it is ignored and only the count is returned. */ int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]); /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the inflection points. */ int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); /** Return 1 for no chop, 2 for having chopped the cubic at a single inflection point, 3 for having chopped at 2 inflection points. dst will hold the resulting 1, 2, or 3 cubics. */ int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3] = nullptr); /** Returns t value of cusp if cubic has one; returns -1 otherwise. */ SkScalar SkFindCubicCusp(const SkPoint src[4]); /** Given a monotonically increasing or decreasing cubic bezier src, chop it * where the X value is the specified value. The returned cubics will be in * dst, sharing the middle point. That is, the first cubic is dst[0..3] and * the second dst[3..6]. * * If the cubic provided is *not* monotone, it will be chopped at the first * time the curve has the specified X value. * * If the cubic never reaches the specified value, the function returns false. */ bool SkChopMonoCubicAtX(const SkPoint src[4], SkScalar x, SkPoint dst[7]); /** Given a monotonically increasing or decreasing cubic bezier src, chop it * where the Y value is the specified value. The returned cubics will be in * dst, sharing the middle point. That is, the first cubic is dst[0..3] and * the second dst[3..6]. * * If the cubic provided is *not* monotone, it will be chopped at the first * time the curve has the specified Y value. * * If the cubic never reaches the specified value, the function returns false. */ bool SkChopMonoCubicAtY(const SkPoint src[4], SkScalar y, SkPoint dst[7]); enum class SkCubicType { … }; static inline bool SkCubicIsDegenerate(SkCubicType type) { … } static inline const char* SkCubicTypeName(SkCubicType type) { … } /** Returns the cubic classification. t[],s[] are set to the two homogeneous parameter values at which points the lines L & M intersect with K, sorted from smallest to largest and oriented so positive values of the implicit are on the "left" side. For a serpentine curve they are the inflection points. For a loop they are the double point. For a local cusp, they are both equal and denote the cusp point. For a cusp at an infinite parameter value, one will be the local inflection point and the other +inf (t,s = 1,0). If the curve is degenerate (i.e. quadratic or linear) they are both set to a parameter value of +inf (t,s = 1,0). d[] is filled with the cubic inflection function coefficients. See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", 4.2 Curve Categorization: If the input points contain infinities or NaN, the return values are undefined. https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf */ SkCubicType SkClassifyCubic(const SkPoint p[4], double t[2] = nullptr, double s[2] = nullptr, double d[4] = nullptr); /////////////////////////////////////////////////////////////////////////////// enum SkRotationDirection { … }; struct SkConic { … }; // inline helpers are contained in a namespace to avoid external leakage to fragile SkVx members namespace { // NOLINT(google-build-namespaces) /** * use for : eval(t) == A * t^2 + B * t + C */ struct SkQuadCoeff { … }; struct SkConicCoeff { … }; struct SkCubicCoeff { … }; } // namespace #include "include/private/base/SkTemplates.h" /** * Help class to allocate storage for approximating a conic with N quads. */ class SkAutoConicToQuads { … }; #endif