// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef MEDIA_GPU_V4L2_V4L2_VIDEO_ENCODE_ACCELERATOR_H_
#define MEDIA_GPU_V4L2_V4L2_VIDEO_ENCODE_ACCELERATOR_H_
#include <linux/videodev2.h>
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <optional>
#include <vector>
#include "base/containers/circular_deque.h"
#include "base/containers/queue.h"
#include "base/files/scoped_file.h"
#include "base/memory/scoped_refptr.h"
#include "base/memory/weak_ptr.h"
#include "base/sequence_checker.h"
#include "base/threading/thread.h"
#include "base/time/time.h"
#include "media/gpu/chromeos/image_processor.h"
#include "media/gpu/media_gpu_export.h"
#include "media/gpu/v4l2/v4l2_device.h"
#include "media/video/video_encode_accelerator.h"
#include "ui/gfx/geometry/size.h"
namespace base {
class SequencedTaskRunner;
} // namespace base
namespace media {
class BitstreamBuffer;
// This class handles video encode acceleration by interfacing with a V4L2
// device exposed by the codec hardware driver. The threading model of this
// class is the same as in the V4L2VideoDecodeAccelerator (from which class this
// was designed).
// This class may try to instantiate and use a ImageProcessor for input
// format conversion, if the input format requested via Initialize() is not
// accepted by the hardware codec.
class MEDIA_GPU_EXPORT V4L2VideoEncodeAccelerator
: public VideoEncodeAccelerator {
public:
explicit V4L2VideoEncodeAccelerator(scoped_refptr<V4L2Device> device);
V4L2VideoEncodeAccelerator(const V4L2VideoEncodeAccelerator&) = delete;
V4L2VideoEncodeAccelerator& operator=(const V4L2VideoEncodeAccelerator&) =
delete;
~V4L2VideoEncodeAccelerator() override;
// VideoEncodeAccelerator implementation.
VideoEncodeAccelerator::SupportedProfiles GetSupportedProfiles() override;
bool Initialize(const Config& config,
Client* client,
std::unique_ptr<MediaLog> media_log) override;
void Encode(scoped_refptr<VideoFrame> frame, bool force_keyframe) override;
void UseOutputBitstreamBuffer(BitstreamBuffer buffer) override;
void RequestEncodingParametersChange(
const Bitrate& bitrate,
uint32_t framerate,
const std::optional<gfx::Size>& size) override;
void RequestEncodingParametersChange(
const VideoBitrateAllocation& bitrate_allocation,
uint32_t framerate,
const std::optional<gfx::Size>& size) override;
void Destroy() override;
void Flush(FlushCallback flush_callback) override;
bool IsFlushSupported() override;
private:
// Auto-destroy reference for BitstreamBuffer, for tracking buffers passed to
// this instance.
struct BitstreamBufferRef;
// Record for codec input buffers.
struct InputRecord {
InputRecord();
InputRecord(const InputRecord&);
~InputRecord();
scoped_refptr<VideoFrame> frame;
// This is valid only if image processor is used. The buffer associated with
// this index can be reused in Dequeue().
std::optional<size_t> ip_output_buffer_index;
};
// Store all the information of input frame passed to Encode().
struct InputFrameInfo {
InputFrameInfo();
InputFrameInfo(scoped_refptr<VideoFrame> frame, bool force_keyframe);
InputFrameInfo(scoped_refptr<VideoFrame> frame,
bool force_keyframe,
size_t index);
InputFrameInfo(const InputFrameInfo&);
~InputFrameInfo();
scoped_refptr<VideoFrame> frame;
bool force_keyframe;
// This is valid only if image processor is used. This info needs to be
// propagated to InputRecord.
std::optional<size_t> ip_output_buffer_index;
};
enum {
// These are rather subjectively tuned.
kInputBufferCount = 2,
kOutputBufferCount = 2,
kImageProcBufferCount = 2,
};
// Internal state of the encoder.
enum State {
kUninitialized, // Initialize() not yet called.
kInitialized, // Initialize() returned true. The encoding is ready after
// InitializeTask() completes successfully.
kEncoding, // Encoding frames.
kFlushing, // Flushing frames.
kError, // Error in encoder state.
};
//
// Callbacks for the image processor, if one is used.
//
// Callback run by the image processor when a |frame| is ready for us to
// encode.
void FrameProcessed(bool force_keyframe,
base::TimeDelta timestamp,
size_t output_buffer_index,
scoped_refptr<VideoFrame> frame);
// Error callback for handling image processor errors.
void ImageProcessorError();
//
// Encoding tasks, to be run on encode_thread_.
//
void EncodeTask(scoped_refptr<VideoFrame> frame, bool force_keyframe);
// Add a BitstreamBuffer to the queue of buffers ready to be used for encoder
// output.
void UseOutputBitstreamBufferTask(BitstreamBuffer buffer);
// Device destruction task.
void DestroyTask();
// Try to output bitstream buffers.
void PumpBitstreamBuffers();
// Flush all the encoded frames. After all frames is flushed successfully or
// any error occurs, |flush_callback| will be called to notify client.
void FlushTask(FlushCallback flush_callback);
// Service I/O on the V4L2 devices. This task should only be scheduled from
// DevicePollTask().
void ServiceDeviceTask();
// Handle the device queues.
void Enqueue();
void Dequeue();
// Enqueue a buffer on the corresponding queue. Returns false on fatal error.
bool EnqueueInputRecord(V4L2WritableBufferRef input_buf);
bool EnqueueOutputRecord(V4L2WritableBufferRef output_buf);
// Attempt to start/stop device_poll_thread_.
bool StartDevicePoll();
bool StopDevicePoll();
//
// Device tasks, to be run on device_poll_thread_.
//
// The device task.
void DevicePollTask(bool poll_device);
//
// Safe from any thread.
//
// Set the encoder_state_ to kError and notify the client (if necessary).
void SetErrorState(EncoderStatus status);
//
// Other utility functions. Called on the |encoder_task_runner_|.
//
// Create image processor that will process |input_layout| +
// |input_visible_rect| to |output_layout|+|output_visible_rect|.
bool CreateImageProcessor(const VideoFrameLayout& input_layout,
const VideoPixelFormat output_format,
const gfx::Size& output_size,
const gfx::Rect& input_visible_rect,
const gfx::Rect& output_visible_rect);
// Process one video frame in |image_processor_input_queue_| by
// |image_processor_|.
void InputImageProcessorTask();
void MaybeFlushImageProcessor();
// Change encoding parameters.
void RequestEncodingParametersChangeTask(
const VideoBitrateAllocation& bitrate_allocation,
uint32_t framerate,
const std::optional<gfx::Size>& size);
// Do several initializations (e.g. set up format) on |encoder_task_runner_|.
void InitializeTask(const Config& config);
// Set up formats and initialize the device for them.
bool SetFormats(VideoPixelFormat input_format,
VideoCodecProfile output_profile);
// Reconfigure format of input buffers and image processor if the buffer
// represented by |frame| is different from one set in input buffers.
bool ReconfigureFormatIfNeeded(const VideoFrame& frame);
// Try to set up the device to the input format we were Initialized() with,
// or if the device doesn't support it, use one it can support, so that we
// can later instantiate an ImageProcessor to convert to it. Return
// std::nullopt if no format is supported, otherwise return v4l2_format
// adjusted by the driver.
std::optional<struct v4l2_format> NegotiateInputFormat(
VideoPixelFormat input_format,
const gfx::Size& frame_size);
// Apply the current crop parameters to the V4L2 device.
bool ApplyCrop();
// Set up the device to the output format requested in Initialize().
bool SetOutputFormat(VideoCodecProfile output_profile);
// Initialize device controls with |config| or default values.
bool InitControls(const Config& config);
// Initialize device controls with |config| or default values.
bool InitControlsH264(const Config& config);
// Initialize device controls with |config| or default values.
void InitControlsVP8(const Config& config);
// Create the buffers we need.
bool CreateInputBuffers();
bool CreateOutputBuffers();
// Destroy these buffers.
void DestroyInputBuffers();
void DestroyOutputBuffers();
// Allocates |count| video frames with |visible_size| for image processor's
// output buffers. Returns false if there's something wrong.
bool AllocateImageProcessorOutputBuffers(size_t count);
// Recycle output buffer of image processor with |output_buffer_index|.
void ReuseImageProcessorOutputBuffer(size_t output_buffer_index);
// Chrome specific metadata about the encoded frame.
BitstreamBufferMetadata GetMetadata(const uint8_t* data,
size_t data_size_bytes,
bool key_frame,
base::TimeDelta timestamp);
// Copy encoded stream data from an output V4L2 buffer at |bitstream_data|
// of size |bitstream_size| into a BitstreamBuffer referenced by |buffer_ref|,
// injecting stream headers if required. Return the size in bytes of the
// resulting stream in the destination buffer.
size_t CopyIntoOutputBuffer(const uint8_t* bitstream_data,
size_t bitstream_size,
std::unique_ptr<BitstreamBufferRef> buffer_ref);
// Initializes input_memory_type_.
bool InitInputMemoryType(const Config& config);
// Having too many encoder instances at once may cause us to run out of FDs
// and subsequently crash (crbug.com/1289465). To avoid that, we limit the
// maximum number of encoder instances that can exist at once.
// |num_instances_| tracks that number.
static constexpr int kMaxNumOfInstances = 10;
static base::AtomicRefCount num_instances_;
const bool can_use_encoder_;
std::string driver_name_;
// Our original calling task runner for the child sequence and its checker.
const scoped_refptr<base::SequencedTaskRunner> child_task_runner_;
SEQUENCE_CHECKER(child_sequence_checker_);
// A coded_size() of VideoFrame on VEA::Encode(). This is updated on the first
// time Encode() if the coded size is different from the expected one by VEA.
// For example, it happens in WebRTC simulcast case.
gfx::Size input_frame_size_;
// A natural_size() of VideoFrame on VEA::Encode(). This is updated on the
// first time Encode() always. The natural_size() of VideoFrames fed by
// VEA::Encode() must be the same as |input_natural_size_|.
gfx::Size input_natural_size_;
// Visible rectangle of VideoFrame to be fed to an encoder driver, in other
// words, a visible rectangle that output encoded bitstream buffers represent.
gfx::Rect encoder_input_visible_rect_;
// Layout of device accepted input VideoFrame.
std::optional<VideoFrameLayout> device_input_layout_;
// Stands for whether an input buffer is native graphic buffer.
bool native_input_mode_;
size_t output_buffer_byte_size_;
uint32_t output_format_fourcc_;
VideoBitrateAllocation current_bitrate_allocation_;
size_t current_framerate_;
// Encoder state, owned and operated by |encoder_task_runner_|.
State encoder_state_;
// For H264, for resilience, we prepend each IDR with SPS and PPS. Some
// devices support this via the V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR
// control. For devices that don't, we cache the latest SPS and PPS and inject
// them into the stream before every IDR.
bool inject_sps_and_pps_ = false;
// Cached SPS (without H.264 start code).
std::vector<uint8_t> cached_sps_;
// Cached PPS (without H.264 start code).
std::vector<uint8_t> cached_pps_;
// Size in bytes required to inject cached SPS and PPS, including H.264
// start codes.
size_t cached_h264_header_size_ = 0;
// Video frames ready to be encoded.
base::queue<InputFrameInfo> encoder_input_queue_;
// Encoder device.
scoped_refptr<V4L2Device> device_;
// Mapping of int index to input buffer record.
std::vector<InputRecord> input_buffer_map_;
v4l2_memory input_memory_type_;
scoped_refptr<V4L2Queue> input_queue_;
scoped_refptr<V4L2Queue> output_queue_;
// Bitstream buffers ready to be used to return encoded output, as a LIFO
// since we don't care about ordering.
std::vector<std::unique_ptr<BitstreamBufferRef>> bitstream_buffer_pool_;
// Queue of encoded bitstream V4L2 buffers. We enqueue the encoded buffers
// from V4L2 devices, and copy the data to the bitstream buffers passed from
// the client via UseOutputBitstreamBuffer().
base::circular_deque<V4L2ReadableBufferRef> output_buffer_queue_;
// The completion callback of the Flush() function.
FlushCallback flush_callback_;
// Indicates whether the V4L2 device supports flush.
// This is set in Initialize().
bool is_flush_supported_;
// Image processor, if one is in use.
std::unique_ptr<ImageProcessor> image_processor_;
// Video frames for image processor output / VideoEncodeAccelerator input.
// Only accessed on child thread.
std::vector<scoped_refptr<VideoFrame>> image_processor_output_buffers_;
// Indexes of free image processor output buffers. Only accessed on
// |child_task_runner_|.
std::vector<size_t> free_image_processor_output_buffer_indices_;
// Video frames ready to be processed. Only accessed on |child_task_runner_|.
base::queue<InputFrameInfo> image_processor_input_queue_;
// The number of frames that are being processed by |image_processor_|.
size_t num_frames_in_image_processor_ = 0;
// Indicates whether V4L2VideoEncodeAccelerator runs in L1T2 or not.
bool h264_l1t2_enabled_ = false;
const scoped_refptr<base::SequencedTaskRunner> encoder_task_runner_;
SEQUENCE_CHECKER(encoder_sequence_checker_);
// The device polling thread handles notifications of V4L2 device changes.
// TODO(sheu): replace this thread with an TYPE_IO encoder_thread_.
base::Thread device_poll_thread_;
// To expose client callbacks from VideoEncodeAccelerator.
// NOTE: all calls to these objects *MUST* be executed on
// |child_task_runner_|.
base::WeakPtr<Client> client_;
std::unique_ptr<base::WeakPtrFactory<Client>> client_ptr_factory_;
// WeakPtr<> pointing to |this| for use in posting tasks to
// |encoder_task_runner_|.
base::WeakPtr<V4L2VideoEncodeAccelerator> weak_this_;
base::WeakPtrFactory<V4L2VideoEncodeAccelerator> weak_this_factory_{this};
};
} // namespace media
#endif // MEDIA_GPU_V4L2_V4L2_VIDEO_ENCODE_ACCELERATOR_H_