// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/parsers/h265_parser.h"
#include <stddef.h>
#include <algorithm>
#include <cmath>
#include <cstring>
#include "base/bits.h"
#include "base/logging.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "media/base/decrypt_config.h"
#include "media/base/video_codecs.h"
#include "media/parsers/bit_reader_macros.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/hdr_metadata.h"
namespace media {
namespace {
// Based on section 7.4.5 (equation 7-44), the elements of
// ScalingList[0][matrixId][i] are expected to define a 4x4 matrix in up-right
// diagonal scan order. Thus, the following 4x4 matrix (indexed by x and y):
//
// x=0 x=1 x=2 x=3
// ________________
// y=0 | a b c d
// y=1 | e f g h
// y=2 | i j k l
// y=3 | m n o p
//
// is expected to appear in ScalingList[0][matrixId][...] as
//
// {a, e, b, i, f, c, m, j, g, d, n, k, h, o, l, p}
// i=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// The relationship between i and (x, y) is defined by the algorithm in 6.5.3
// with an input of (1 << log2BlockSize) (see 7.4.3.2.1) where log2BlockSize is
// 2 for a 4x4 matrix.
//
// Some APIs (such as the VA-API) want the scaling lists in raster scan order
// instead of up-right diagonal scan order. That is, for the matrix above, they
// expect:
//
// {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p}
// j=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Therefore, given j and the data in up-right diagonal order, we need to get
// the corresponding entry in raster order. The
// k4x4RasterScanOrderIdxToUpRightDiagScanOrderIdx array allows us to do this.
// It's an array where the index is j and the corresponding element is i. This
// array is derived from the algorithm in 6.5.3 by simply setting:
//
// k4x4RasterScanOrderIdxToUpRightDiagScanOrderIdx[blkSize * y + x] = i
//
// every time diagScanX and diagScanY are updated.
//
// As a usage example, let's say we want to get the entry at index 6 of the
// raster scan order. We get k4x4RasterScanOrderIdxToUpRightDiagScanOrderIdx[6]
// which is 8. Then we get arrayInUpRightDiagOrder[8] which in the example above
// is 'g'.
constexpr size_t k4x4RasterScanOrderIdxToUpRightDiagScanOrderIdx[] = {
0, 2, 5, 9, 1, 4, 8, 12, 3, 7, 11, 14, 6, 10, 13, 15,
};
// k8x8RasterScanOrderIdxToUpRightDiagScanOrderIdx serves the same purpose as
// k4x4RasterScanOrderIdxToUpRightDiagScanOrderIdx but for 8x8 matrices. This
// array is also derived from the algorithm in 6.5.3 in a similar manner with
// (1 << log2BlockSize) as the input where log2BlockSize is 3.
constexpr size_t k8x8RasterScanOrderIdxToUpRightDiagScanOrderIdx[] = {
0, 2, 5, 9, 14, 20, 27, 35, 1, 4, 8, 13, 19, 26, 34, 42,
3, 7, 12, 18, 25, 33, 41, 48, 6, 11, 17, 24, 32, 40, 47, 53,
10, 16, 23, 31, 39, 46, 52, 57, 15, 22, 30, 38, 45, 51, 56, 60,
21, 29, 37, 44, 50, 55, 59, 62, 28, 36, 43, 49, 54, 58, 61, 63,
};
// From Table 7-6.
constexpr uint8_t kDefaultScalingListSize1To3Matrix0To2[] = {
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 16, 17, 16, 17, 18,
17, 18, 18, 17, 18, 21, 19, 20, 21, 20, 19, 21, 24, 22, 22, 24,
24, 22, 22, 24, 25, 25, 27, 30, 27, 25, 25, 29, 31, 35, 35, 31,
29, 36, 41, 44, 41, 36, 47, 54, 54, 47, 65, 70, 65, 88, 88, 115,
};
constexpr uint8_t kDefaultScalingListSize1To3Matrix3To5[] = {
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18,
18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 24, 24, 24, 24,
24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 28, 28, 28, 28, 28,
28, 33, 33, 33, 33, 33, 41, 41, 41, 41, 54, 54, 54, 71, 71, 91,
};
// VUI parameters: Table E-1 "Interpretation of sample aspect ratio indicator"
constexpr int kTableSarWidth[] = {0, 1, 12, 10, 16, 40, 24, 20, 32,
80, 18, 15, 64, 160, 4, 3, 2};
constexpr int kTableSarHeight[] = {0, 1, 11, 11, 11, 33, 11, 11, 11,
33, 11, 11, 33, 99, 3, 2, 1};
static_assert(std::size(kTableSarWidth) == std::size(kTableSarHeight),
"sar tables must have the same size");
void FillInDefaultScalingListData(H265ScalingListData* scaling_list_data,
int size_id,
int matrix_id) {
if (size_id == 0) {
std::fill_n(scaling_list_data->scaling_list_4x4[matrix_id],
H265ScalingListData::kScalingListSizeId0Count,
H265ScalingListData::kDefaultScalingListSize0Values);
return;
}
uint8_t* dst;
switch (size_id) {
case 1:
dst = scaling_list_data->scaling_list_8x8[matrix_id];
break;
case 2:
dst = scaling_list_data->scaling_list_16x16[matrix_id];
break;
case 3:
dst = scaling_list_data->scaling_list_32x32[matrix_id];
break;
}
const uint8_t* src;
if (matrix_id < 3)
src = kDefaultScalingListSize1To3Matrix0To2;
else
src = kDefaultScalingListSize1To3Matrix3To5;
memcpy(dst, src,
H265ScalingListData::kScalingListSizeId1To3Count * sizeof(*src));
// These are sixteen because the default for the minus8 values is 8.
if (size_id == 2)
scaling_list_data->scaling_list_dc_coef_16x16[matrix_id] = 16;
else if (size_id == 3)
scaling_list_data->scaling_list_dc_coef_32x32[matrix_id] = 16;
}
} // namespace
H265ScalingListData::H265ScalingListData() {
memset(reinterpret_cast<void*>(this), 0, sizeof(*this));
}
uint8_t H265ScalingListData::GetScalingList4x4EntryInRasterOrder(
size_t matrix_id,
size_t raster_idx) const {
// Per equation 7-44, ScalingList[0][matrixId][..] (i.e., the 4x4 scaling list
// data) is associated with ScanOrder[2][0][..] (i.e., an up-right diagonal
// scan ordering for a 4x4 matrix).
CHECK_LT(raster_idx,
std::size(k4x4RasterScanOrderIdxToUpRightDiagScanOrderIdx));
const size_t up_right_diag_idx =
k4x4RasterScanOrderIdxToUpRightDiagScanOrderIdx[raster_idx];
return scaling_list_4x4[matrix_id][up_right_diag_idx];
}
uint8_t H265ScalingListData::GetScalingList8x8EntryInRasterOrder(
size_t matrix_id,
size_t raster_idx) const {
// Per equation 7-45, ScalingList[1][matrixId][..] (i.e., the 8x8 scaling list
// data) is associated with ScanOrder[3][0][..] (i.e., an up-right diagonal
// scan ordering for an 8x8 matrix).
CHECK_LT(raster_idx,
std::size(k8x8RasterScanOrderIdxToUpRightDiagScanOrderIdx));
const size_t up_right_diag_idx =
k8x8RasterScanOrderIdxToUpRightDiagScanOrderIdx[raster_idx];
return scaling_list_8x8[matrix_id][up_right_diag_idx];
}
uint8_t H265ScalingListData::GetScalingList16x16EntryInRasterOrder(
size_t matrix_id,
size_t raster_idx) const {
// Per equation 7-46, ScalingList[2][matrixId][..] (i.e., the 16x16 scaling
// list data) is associated with ScanOrder[3][0][..] (i.e., an up-right
// diagonal scan ordering for an 8x8 matrix).
CHECK_LT(raster_idx,
std::size(k8x8RasterScanOrderIdxToUpRightDiagScanOrderIdx));
const size_t up_right_diag_idx =
k8x8RasterScanOrderIdxToUpRightDiagScanOrderIdx[raster_idx];
return scaling_list_16x16[matrix_id][up_right_diag_idx];
}
uint8_t H265ScalingListData::GetScalingList32x32EntryInRasterOrder(
size_t matrix_id,
size_t raster_idx) const {
// Per equation 7-48, ScalingList[3][matrixId][..] (i.e., the 32x32 scaling
// list data) is associated with ScanOrder[3][0][..] (i.e., an up-right
// diagonal scan ordering for an 8x8 matrix).
CHECK_LT(raster_idx,
std::size(k8x8RasterScanOrderIdxToUpRightDiagScanOrderIdx));
const size_t up_right_diag_idx =
k8x8RasterScanOrderIdxToUpRightDiagScanOrderIdx[raster_idx];
return scaling_list_32x32[matrix_id][up_right_diag_idx];
}
H265StRefPicSet::H265StRefPicSet() {
memset(reinterpret_cast<void*>(this), 0, sizeof(*this));
}
H265SPS::H265SPS() {
memset(reinterpret_cast<void*>(this), 0, sizeof(*this));
}
H265ProfileTierLevel::H265ProfileTierLevel() {
memset(reinterpret_cast<void*>(this), 0, sizeof(*this));
}
H265VUIParameters::H265VUIParameters() {
memset(reinterpret_cast<void*>(this), 0, sizeof(*this));
}
H265PPS::H265PPS() {
memset(reinterpret_cast<void*>(this), 0, sizeof(*this));
}
H265VPS::H265VPS() {
memset(reinterpret_cast<void*>(this), 0, sizeof(*this));
}
H265RefPicListsModifications::H265RefPicListsModifications() {
memset(reinterpret_cast<void*>(this), 0, sizeof(*this));
}
H265PredWeightTable::H265PredWeightTable() {
memset(reinterpret_cast<void*>(this), 0, sizeof(*this));
}
H265SliceHeader::H265SliceHeader() {
memset(reinterpret_cast<void*>(this), 0, sizeof(*this));
}
H265SEIMessage::H265SEIMessage() {
memset(reinterpret_cast<void*>(this), 0, sizeof(*this));
}
H265SEI::H265SEI() = default;
H265SEI::~H265SEI() = default;
H265Parser::H265Parser() = default;
H265Parser::~H265Parser() = default;
int H265ProfileTierLevel::GetMaxLumaPs() const {
// From Table A.8 - General tier and level limits.
// |general_level_idc| is 30x the actual level.
if (general_level_idc <= 30) // level 1
return 36864;
if (general_level_idc <= 60) // level 2
return 122880;
if (general_level_idc <= 63) // level 2.1
return 245760;
if (general_level_idc <= 90) // level 3
return 552960;
if (general_level_idc <= 93) // level 3.1
return 983040;
if (general_level_idc <= 123) // level 4, 4.1
return 2228224;
if (general_level_idc <= 156) // level 5, 5.1, 5.2
return 8912896;
// level 6, 6.1, 6.2 - beyond that there's no actual limit.
return 35651584;
}
size_t H265ProfileTierLevel::GetDpbMaxPicBuf() const {
// From A.4.2 - Profile-specific level limits for the video profiles.
// If sps_curr_pic_ref_enabled_flag is required to be zero, than this is 6
// otherwise it is 7.
return (general_profile_idc >= kProfileIdcMain &&
general_profile_idc <= kProfileIdcHighThroughput)
? 6
: 7;
}
gfx::Size H265SPS::GetCodedSize() const {
return gfx::Size(pic_width_in_luma_samples, pic_height_in_luma_samples);
}
gfx::Rect H265SPS::GetVisibleRect() const {
// 7.4.3.2.1
// These are verified in the parser that they won't overflow.
int left = (conf_win_left_offset + vui_parameters.def_disp_win_left_offset) *
sub_width_c;
int top = (conf_win_top_offset + vui_parameters.def_disp_win_top_offset) *
sub_height_c;
int right =
(conf_win_right_offset + vui_parameters.def_disp_win_right_offset) *
sub_width_c;
int bottom =
(conf_win_bottom_offset + vui_parameters.def_disp_win_bottom_offset) *
sub_height_c;
return gfx::Rect(left, top, pic_width_in_luma_samples - left - right,
pic_height_in_luma_samples - top - bottom);
}
// From E.3.1 VUI parameters semantics
VideoColorSpace H265SPS::GetColorSpace() const {
if (!vui_parameters.colour_description_present_flag)
return VideoColorSpace();
return VideoColorSpace(
vui_parameters.colour_primaries, vui_parameters.transfer_characteristics,
vui_parameters.matrix_coeffs,
vui_parameters.video_full_range_flag ? gfx::ColorSpace::RangeID::FULL
: gfx::ColorSpace::RangeID::LIMITED);
}
VideoChromaSampling H265SPS::GetChromaSampling() const {
switch (chroma_format_idc) {
case 0:
return VideoChromaSampling::k400;
case 1:
return VideoChromaSampling::k420;
case 2:
return VideoChromaSampling::k422;
case 3:
return VideoChromaSampling::k444;
default:
NOTREACHED();
}
}
bool H265SliceHeader::IsISlice() const {
return slice_type == kSliceTypeI;
}
bool H265SliceHeader::IsPSlice() const {
return slice_type == kSliceTypeP;
}
bool H265SliceHeader::IsBSlice() const {
return slice_type == kSliceTypeB;
}
H265Parser::Result H265Parser::ParseVPS(int* vps_id) {
DVLOG(4) << "Parsing VPS";
Result res = kOk;
DCHECK(vps_id);
*vps_id = -1;
std::unique_ptr<H265VPS> vps = std::make_unique<H265VPS>();
READ_BITS_OR_RETURN(4, &vps->vps_video_parameter_set_id);
IN_RANGE_OR_RETURN(vps->vps_video_parameter_set_id, 0, 16);
READ_BOOL_OR_RETURN(&vps->vps_base_layer_internal_flag);
READ_BOOL_OR_RETURN(&vps->vps_base_layer_available_flag);
READ_BITS_OR_RETURN(6, &vps->vps_max_layers_minus1);
IN_RANGE_OR_RETURN(vps->vps_max_layers_minus1, 0, 63);
READ_BITS_OR_RETURN(3, &vps->vps_max_sub_layers_minus1);
IN_RANGE_OR_RETURN(vps->vps_max_sub_layers_minus1, 0, 7);
READ_BOOL_OR_RETURN(&vps->vps_temporal_id_nesting_flag);
SKIP_BITS_OR_RETURN(16); // vps_reserved_0xffff_16bits
res = ParseProfileTierLevel(true, vps->vps_max_sub_layers_minus1,
&vps->profile_tier_level);
if (res != kOk) {
return res;
}
bool vps_sub_layer_ordering_info_present_flag;
READ_BOOL_OR_RETURN(&vps_sub_layer_ordering_info_present_flag);
for (int i = vps_sub_layer_ordering_info_present_flag
? 0
: vps->vps_max_sub_layers_minus1;
i <= vps->vps_max_sub_layers_minus1; ++i) {
READ_UE_OR_RETURN(&vps->vps_max_dec_pic_buffering_minus1[i]);
IN_RANGE_OR_RETURN(vps->vps_max_dec_pic_buffering_minus1[i], 0, 15);
READ_UE_OR_RETURN(&vps->vps_max_num_reorder_pics[i]);
IN_RANGE_OR_RETURN(vps->vps_max_num_reorder_pics[i], 0,
vps->vps_max_dec_pic_buffering_minus1[i]);
if (i > 0) {
TRUE_OR_RETURN(vps->vps_max_dec_pic_buffering_minus1[i] >=
vps->vps_max_dec_pic_buffering_minus1[i - 1]);
TRUE_OR_RETURN(vps->vps_max_num_reorder_pics[i] >=
vps->vps_max_num_reorder_pics[i - 1]);
}
READ_UE_OR_RETURN(&vps->vps_max_latency_increase_plus1[i]);
}
if (!vps_sub_layer_ordering_info_present_flag) {
for (int i = 0; i < vps->vps_max_sub_layers_minus1; ++i) {
vps->vps_max_dec_pic_buffering_minus1[i] =
vps->vps_max_dec_pic_buffering_minus1[vps->vps_max_sub_layers_minus1];
vps->vps_max_num_reorder_pics[i] =
vps->vps_max_num_reorder_pics[vps->vps_max_sub_layers_minus1];
vps->vps_max_latency_increase_plus1[i] =
vps->vps_max_latency_increase_plus1[vps->vps_max_sub_layers_minus1];
}
}
READ_BITS_OR_RETURN(6, &vps->vps_max_layer_id);
IN_RANGE_OR_RETURN(vps->vps_max_layer_id, 0, 63);
READ_UE_OR_RETURN(&vps->vps_num_layer_sets_minus1);
IN_RANGE_OR_RETURN(vps->vps_num_layer_sets_minus1, 0, 1023);
for (int i = 1; i <= vps->vps_num_layer_sets_minus1; ++i) {
for (int j = 0; j <= vps->vps_max_layer_id; ++j) {
SKIP_BITS_OR_RETURN(1); // layer_id_included_flag[i][j]
}
}
bool vps_timing_info_present_flag;
READ_BOOL_OR_RETURN(&vps_timing_info_present_flag);
if (vps_timing_info_present_flag) {
SKIP_BITS_OR_RETURN(32); // vps_num_units_in_tick (!= 0)
SKIP_BITS_OR_RETURN(32); // vps_time_scale (!= 0)
bool vps_poc_proportional_to_timing_flag;
READ_BOOL_OR_RETURN(&vps_poc_proportional_to_timing_flag);
if (vps_poc_proportional_to_timing_flag) {
int vps_num_ticks_poc_diff_one_minus1;
// Valid range is 0 to 2^32 - 2, which doesn't actually fit in an int.
READ_UE_OR_RETURN(&vps_num_ticks_poc_diff_one_minus1);
}
int vps_num_hrd_parameters;
READ_UE_OR_RETURN(&vps_num_hrd_parameters);
IN_RANGE_OR_RETURN(vps_num_hrd_parameters, 0,
vps->vps_num_layer_sets_minus1 + 1);
for (int i = 0; i < vps_num_hrd_parameters; ++i) {
int hrd_layer_set_idx_i;
READ_UE_OR_RETURN(&hrd_layer_set_idx_i);
IN_RANGE_OR_RETURN(hrd_layer_set_idx_i,
vps->vps_base_layer_internal_flag ? 0 : 1,
vps->vps_num_layer_sets_minus1 + 1);
bool cprms_present_flag = true;
if (i > 0) {
READ_BOOL_OR_RETURN(&cprms_present_flag);
}
// E.2.2 hrd_parameters()
bool nal_hrd_parameters_present_flag = false;
bool vcl_hrd_parameters_present_flag = false;
bool sub_pic_hrd_params_present_flag = false;
if (cprms_present_flag) {
READ_BOOL_OR_RETURN(&nal_hrd_parameters_present_flag);
READ_BOOL_OR_RETURN(&vcl_hrd_parameters_present_flag);
if (nal_hrd_parameters_present_flag ||
vcl_hrd_parameters_present_flag) {
READ_BOOL_OR_RETURN(&sub_pic_hrd_params_present_flag);
if (sub_pic_hrd_params_present_flag) {
SKIP_BITS_OR_RETURN(8); // tick_divisor_minus2
SKIP_BITS_OR_RETURN(
5); // du_cpb_removal_delay_increment_length_minus1
SKIP_BITS_OR_RETURN(
1); // sub_pic_cpb_params_in_pic_timing_sei_flag
SKIP_BITS_OR_RETURN(5); // dpb_output_delay_du_length_minus1
}
SKIP_BITS_OR_RETURN(4); // bit_rate_scale
SKIP_BITS_OR_RETURN(4); // cpb_size_scale
if (sub_pic_hrd_params_present_flag) {
SKIP_BITS_OR_RETURN(4); // cpb_size_du_scale
}
SKIP_BITS_OR_RETURN(5); // initial_cpb_removal_delay_length_minus1
SKIP_BITS_OR_RETURN(5); // au_cpb_removal_delay_length_minus1
SKIP_BITS_OR_RETURN(5); // dpb_output_delay_length_minus1
}
}
for (int j = 0; j <= vps->vps_max_sub_layers_minus1; ++j) {
bool fixed_pic_rate_general_flag_j;
READ_BOOL_OR_RETURN(&fixed_pic_rate_general_flag_j);
bool fixed_pic_rate_within_cvs_flag_j = true;
if (!fixed_pic_rate_general_flag_j) {
READ_BOOL_OR_RETURN(&fixed_pic_rate_within_cvs_flag_j);
}
bool low_delay_hrd_flag_j = false;
if (fixed_pic_rate_within_cvs_flag_j) {
int elemental_duration_in_tc_minus1;
READ_UE_OR_RETURN(&elemental_duration_in_tc_minus1);
} else {
READ_BOOL_OR_RETURN(&low_delay_hrd_flag_j);
}
int cpb_cnt_minus1_j = 0;
if (!low_delay_hrd_flag_j) {
READ_UE_OR_RETURN(&cpb_cnt_minus1_j);
IN_RANGE_OR_RETURN(cpb_cnt_minus1_j, 0, 31);
}
if (nal_hrd_parameters_present_flag) {
// E.2.3 sub_layer_hrd_parameters()
for (int k = 0; k < cpb_cnt_minus1_j + 1; ++k) {
int bit_rate_value_minus1_k;
READ_UE_OR_RETURN(&bit_rate_value_minus1_k);
int cpb_size_value_minus1_k;
READ_UE_OR_RETURN(&cpb_size_value_minus1_k);
if (sub_pic_hrd_params_present_flag) {
int cpb_size_du_value_minus1_k;
READ_UE_OR_RETURN(&cpb_size_du_value_minus1_k);
int bit_rate_du_value_minus1_k;
READ_UE_OR_RETURN(&bit_rate_du_value_minus1_k);
}
SKIP_BITS_OR_RETURN(1); // cbr_flag
}
}
if (vcl_hrd_parameters_present_flag) {
// E.2.3 sub_layer_hrd_parameters()
for (int k = 0; k < cpb_cnt_minus1_j + 1; ++k) {
int bit_rate_value_minus1_k;
READ_UE_OR_RETURN(&bit_rate_value_minus1_k);
int cpb_size_value_minus1_k;
READ_UE_OR_RETURN(&cpb_size_value_minus1_k);
if (sub_pic_hrd_params_present_flag) {
int cpb_size_du_value_minus1_k;
READ_UE_OR_RETURN(&cpb_size_du_value_minus1_k);
int bit_rate_du_value_minus1_k;
READ_UE_OR_RETURN(&bit_rate_du_value_minus1_k);
}
SKIP_BITS_OR_RETURN(1); // cbr_flag
}
}
}
}
}
// F.7.3.2.1 multi-layer video_parameter_set_rbsp()
bool vps_extension_flag;
READ_BOOL_OR_RETURN(&vps_extension_flag);
if (vps_extension_flag) {
BYTE_ALIGNMENT();
// F.7.3.2.1.1 vps_extension()
if (vps->vps_max_layers_minus1 > 0 && vps->vps_base_layer_internal_flag) {
H265ProfileTierLevel profile_tier_level;
res = ParseProfileTierLevel(false, vps->vps_max_sub_layers_minus1,
&profile_tier_level);
if (res != kOk) {
return res;
}
}
bool splitting_flag;
READ_BOOL_OR_RETURN(&splitting_flag);
bool scalability_mask_flag[16] = {false};
int num_scalability_types = 0;
for (int i = 0; i < 16; ++i) {
READ_BOOL_OR_RETURN(&scalability_mask_flag[i]);
num_scalability_types += scalability_mask_flag[i];
}
int dimension_id_len_minus1[16] = {0};
for (int j = 0; j < (num_scalability_types - splitting_flag); ++j) {
READ_BITS_OR_RETURN(3, &dimension_id_len_minus1[j]);
}
int dim_bit_offset[17] = {0};
if (splitting_flag) {
// Equation F-2
for (int j = 1; j <= num_scalability_types - 1; ++j) {
dim_bit_offset[j] =
dim_bit_offset[j - 1] + dimension_id_len_minus1[j - 1] + 1;
}
// F.7.4.3.1.1 dimension_id_len_minus1
// Note: this value is specified to be inferred regardless of the value of
// NumScalabilityTypes, but the indices would be negative if it were zero.
if (num_scalability_types) {
dimension_id_len_minus1[num_scalability_types - 1] =
5 - dim_bit_offset[num_scalability_types - 1];
}
dim_bit_offset[num_scalability_types] = 6;
if (num_scalability_types) {
LE_OR_RETURN(dim_bit_offset[num_scalability_types - 1], 5);
}
}
bool vps_nuh_layer_id_present_flag;
READ_BOOL_OR_RETURN(&vps_nuh_layer_id_present_flag);
for (int i = 1; i <= std::min(62, vps->vps_max_layers_minus1); ++i) {
int layer_id_in_nuh_i = i;
if (vps_nuh_layer_id_present_flag) {
READ_BITS_OR_RETURN(6, &layer_id_in_nuh_i);
}
int dimension_id_i[16] = {0};
if (!splitting_flag) {
for (int j = 0; j < num_scalability_types; ++j) {
READ_BITS_OR_RETURN(dimension_id_len_minus1[j] + 1,
&dimension_id_i[j]);
}
} else {
// F.7.4.3.1.1 dimension_id
for (int j = 0; j < num_scalability_types; ++j) {
dimension_id_i[j] =
(layer_id_in_nuh_i & ((1 << dim_bit_offset[j + 1]) - 1)) >>
dim_bit_offset[j];
}
}
// F.7.4.3.1.1 dimension_id
// We can skip layer zero because all dimension_id[0][j] == 0.
int scalability_id_i[16] = {0};
for (int sm_idx = 0, j = 0; sm_idx < 16; ++sm_idx) {
if (scalability_mask_flag[sm_idx]) {
scalability_id_i[sm_idx] = dimension_id_i[j++];
}
}
if (scalability_id_i[3] == 1) {
vps->aux_alpha_layer_id = layer_id_in_nuh_i;
}
}
}
// If an VPS with the same id already exists, replace it.
*vps_id = vps->vps_video_parameter_set_id;
active_vps_[*vps_id] = std::move(vps);
return res;
}
H265Parser::Result H265Parser::ParseSPS(int* sps_id) {
// 7.4.3.2
DVLOG(4) << "Parsing SPS";
Result res = kOk;
DCHECK(sps_id);
*sps_id = -1;
std::unique_ptr<H265SPS> sps = std::make_unique<H265SPS>();
READ_BITS_OR_RETURN(4, &sps->sps_video_parameter_set_id);
IN_RANGE_OR_RETURN(sps->sps_video_parameter_set_id, 0, 15);
READ_BITS_OR_RETURN(3, &sps->sps_max_sub_layers_minus1);
IN_RANGE_OR_RETURN(sps->sps_max_sub_layers_minus1, 0, 6);
READ_BOOL_OR_RETURN(&sps->sps_temporal_id_nesting_flag);
res = ParseProfileTierLevel(true, sps->sps_max_sub_layers_minus1,
&sps->profile_tier_level);
if (res != kOk)
return res;
READ_UE_OR_RETURN(&sps->sps_seq_parameter_set_id);
IN_RANGE_OR_RETURN(sps->sps_seq_parameter_set_id, 0, 15);
READ_UE_OR_RETURN(&sps->chroma_format_idc);
IN_RANGE_OR_RETURN(sps->chroma_format_idc, 0, 3);
if (sps->chroma_format_idc == 3) {
READ_BOOL_OR_RETURN(&sps->separate_colour_plane_flag);
}
sps->chroma_array_type =
sps->separate_colour_plane_flag ? 0 : sps->chroma_format_idc;
// Table 6-1.
if (sps->chroma_format_idc == 1) {
sps->sub_width_c = sps->sub_height_c = 2;
} else if (sps->chroma_format_idc == 2) {
sps->sub_width_c = 2;
sps->sub_height_c = 1;
} else {
sps->sub_width_c = sps->sub_height_c = 1;
}
READ_UE_OR_RETURN(&sps->pic_width_in_luma_samples);
READ_UE_OR_RETURN(&sps->pic_height_in_luma_samples);
TRUE_OR_RETURN(sps->pic_width_in_luma_samples != 0);
TRUE_OR_RETURN(sps->pic_height_in_luma_samples != 0);
// Equation A-2: Calculate max_dpb_size.
int max_luma_ps = sps->profile_tier_level.GetMaxLumaPs();
base::CheckedNumeric<int> pic_size = sps->pic_height_in_luma_samples;
pic_size *= sps->pic_width_in_luma_samples;
if (!pic_size.IsValid())
return kInvalidStream;
int pic_size_in_samples_y = pic_size.ValueOrDefault(0);
size_t max_dpb_pic_buf = sps->profile_tier_level.GetDpbMaxPicBuf();
if (pic_size_in_samples_y <= (max_luma_ps >> 2))
sps->max_dpb_size = std::min(4 * max_dpb_pic_buf, size_t{16});
else if (pic_size_in_samples_y <= (max_luma_ps >> 1))
sps->max_dpb_size = std::min(2 * max_dpb_pic_buf, size_t{16});
else if (pic_size_in_samples_y <= ((3 * max_luma_ps) >> 2))
sps->max_dpb_size = std::min((4 * max_dpb_pic_buf) / 3, size_t{16});
else
sps->max_dpb_size = max_dpb_pic_buf;
bool conformance_window_flag;
READ_BOOL_OR_RETURN(&conformance_window_flag);
if (conformance_window_flag) {
READ_UE_OR_RETURN(&sps->conf_win_left_offset);
READ_UE_OR_RETURN(&sps->conf_win_right_offset);
READ_UE_OR_RETURN(&sps->conf_win_top_offset);
READ_UE_OR_RETURN(&sps->conf_win_bottom_offset);
base::CheckedNumeric<int> width_crop = sps->conf_win_left_offset;
width_crop += sps->conf_win_right_offset;
width_crop *= sps->sub_width_c;
if (!width_crop.IsValid())
return kInvalidStream;
TRUE_OR_RETURN(width_crop.ValueOrDefault(0) <
sps->pic_width_in_luma_samples);
base::CheckedNumeric<int> height_crop = sps->conf_win_top_offset;
height_crop += sps->conf_win_bottom_offset;
height_crop *= sps->sub_height_c;
if (!height_crop.IsValid())
return kInvalidStream;
TRUE_OR_RETURN(height_crop.ValueOrDefault(0) <
sps->pic_height_in_luma_samples);
}
READ_UE_OR_RETURN(&sps->bit_depth_luma_minus8);
IN_RANGE_OR_RETURN(sps->bit_depth_luma_minus8, 0, 8);
sps->bit_depth_y = sps->bit_depth_luma_minus8 + 8;
READ_UE_OR_RETURN(&sps->bit_depth_chroma_minus8);
IN_RANGE_OR_RETURN(sps->bit_depth_chroma_minus8, 0, 8);
sps->bit_depth_c = sps->bit_depth_chroma_minus8 + 8;
READ_UE_OR_RETURN(&sps->log2_max_pic_order_cnt_lsb_minus4);
IN_RANGE_OR_RETURN(sps->log2_max_pic_order_cnt_lsb_minus4, 0, 12);
sps->max_pic_order_cnt_lsb =
std::pow(2, sps->log2_max_pic_order_cnt_lsb_minus4 + 4);
bool sps_sub_layer_ordering_info_present_flag;
READ_BOOL_OR_RETURN(&sps_sub_layer_ordering_info_present_flag);
for (int i = sps_sub_layer_ordering_info_present_flag
? 0
: sps->sps_max_sub_layers_minus1;
i <= sps->sps_max_sub_layers_minus1; ++i) {
READ_UE_OR_RETURN(&sps->sps_max_dec_pic_buffering_minus1[i]);
IN_RANGE_OR_RETURN(sps->sps_max_dec_pic_buffering_minus1[i], 0,
static_cast<int>(sps->max_dpb_size) - 1);
READ_UE_OR_RETURN(&sps->sps_max_num_reorder_pics[i]);
IN_RANGE_OR_RETURN(sps->sps_max_num_reorder_pics[i], 0,
sps->sps_max_dec_pic_buffering_minus1[i]);
if (i > 0) {
TRUE_OR_RETURN(sps->sps_max_dec_pic_buffering_minus1[i] >=
sps->sps_max_dec_pic_buffering_minus1[i - 1]);
TRUE_OR_RETURN(sps->sps_max_num_reorder_pics[i] >=
sps->sps_max_num_reorder_pics[i - 1]);
}
READ_UE_OR_RETURN(&sps->sps_max_latency_increase_plus1[i]);
IN_RANGE_OR_RETURN(sps->sps_max_latency_increase_plus1[i], 0, 0xFFFFFFFE);
}
if (!sps_sub_layer_ordering_info_present_flag) {
// Fill in the default values for the other sublayers.
for (int i = 0; i < sps->sps_max_sub_layers_minus1; ++i) {
sps->sps_max_dec_pic_buffering_minus1[i] =
sps->sps_max_dec_pic_buffering_minus1[sps->sps_max_sub_layers_minus1];
sps->sps_max_num_reorder_pics[i] =
sps->sps_max_num_reorder_pics[sps->sps_max_sub_layers_minus1];
sps->sps_max_latency_increase_plus1[i] =
sps->sps_max_latency_increase_plus1[sps->sps_max_sub_layers_minus1];
}
}
// Equation 7-9: Calculate SpsMaxLatencyPictures.
for (int i = 0; i <= sps->sps_max_sub_layers_minus1; ++i) {
if (sps->sps_max_latency_increase_plus1[i] != 0) {
sps->sps_max_latency_pictures[i] =
static_cast<uint32_t>(sps->sps_max_num_reorder_pics[i]) +
sps->sps_max_latency_increase_plus1[i] - 1;
} else {
sps->sps_max_latency_pictures[i] = 0;
}
}
READ_UE_OR_RETURN(&sps->log2_min_luma_coding_block_size_minus3);
// This enforces that min_cb_log2_size_y below will be <= 30 and prevents
// integer overflow math there.
TRUE_OR_RETURN(sps->log2_min_luma_coding_block_size_minus3 <= 27);
READ_UE_OR_RETURN(&sps->log2_diff_max_min_luma_coding_block_size);
int min_cb_log2_size_y = sps->log2_min_luma_coding_block_size_minus3 + 3;
base::CheckedNumeric<int> ctb_log2_size_y = min_cb_log2_size_y;
ctb_log2_size_y += sps->log2_diff_max_min_luma_coding_block_size;
if (!ctb_log2_size_y.IsValid())
return kInvalidStream;
sps->ctb_log2_size_y = ctb_log2_size_y.ValueOrDefault(0);
TRUE_OR_RETURN(sps->ctb_log2_size_y <= 30);
int min_cb_size_y = 1 << min_cb_log2_size_y;
int ctb_size_y = 1 << sps->ctb_log2_size_y;
sps->pic_width_in_ctbs_y = base::ClampCeil(
static_cast<float>(sps->pic_width_in_luma_samples) / ctb_size_y);
sps->pic_height_in_ctbs_y = base::ClampCeil(
static_cast<float>(sps->pic_height_in_luma_samples) / ctb_size_y);
base::CheckedNumeric<int> pic_size_in_ctbs_y = sps->pic_width_in_ctbs_y;
pic_size_in_ctbs_y *= sps->pic_height_in_ctbs_y;
if (!pic_size_in_ctbs_y.IsValid())
return kInvalidStream;
sps->pic_size_in_ctbs_y = pic_size_in_ctbs_y.ValueOrDefault(0);
TRUE_OR_RETURN(sps->pic_width_in_luma_samples % min_cb_size_y == 0);
TRUE_OR_RETURN(sps->pic_height_in_luma_samples % min_cb_size_y == 0);
READ_UE_OR_RETURN(&sps->log2_min_luma_transform_block_size_minus2);
TRUE_OR_RETURN(sps->log2_min_luma_transform_block_size_minus2 <
min_cb_log2_size_y - 2);
int min_tb_log2_size_y = sps->log2_min_luma_transform_block_size_minus2 + 2;
READ_UE_OR_RETURN(&sps->log2_diff_max_min_luma_transform_block_size);
TRUE_OR_RETURN(sps->log2_diff_max_min_luma_transform_block_size <=
std::min(sps->ctb_log2_size_y, 5) - min_tb_log2_size_y);
READ_UE_OR_RETURN(&sps->max_transform_hierarchy_depth_inter);
IN_RANGE_OR_RETURN(sps->max_transform_hierarchy_depth_inter, 0,
sps->ctb_log2_size_y - min_tb_log2_size_y);
READ_UE_OR_RETURN(&sps->max_transform_hierarchy_depth_intra);
IN_RANGE_OR_RETURN(sps->max_transform_hierarchy_depth_intra, 0,
sps->ctb_log2_size_y - min_tb_log2_size_y);
READ_BOOL_OR_RETURN(&sps->scaling_list_enabled_flag);
if (sps->scaling_list_enabled_flag) {
READ_BOOL_OR_RETURN(&sps->sps_scaling_list_data_present_flag);
}
if (sps->sps_scaling_list_data_present_flag) {
res = ParseScalingListData(&sps->scaling_list_data);
if (res != kOk)
return res;
} else {
// Fill it in with the default values.
for (int size_id = 0; size_id < 4; ++size_id) {
for (int matrix_id = 0; matrix_id < 6;
matrix_id += (size_id == 3) ? 3 : 1) {
FillInDefaultScalingListData(&sps->scaling_list_data, size_id,
matrix_id);
}
}
}
READ_BOOL_OR_RETURN(&sps->amp_enabled_flag);
READ_BOOL_OR_RETURN(&sps->sample_adaptive_offset_enabled_flag);
READ_BOOL_OR_RETURN(&sps->pcm_enabled_flag);
if (sps->pcm_enabled_flag) {
READ_BITS_OR_RETURN(4, &sps->pcm_sample_bit_depth_luma_minus1);
TRUE_OR_RETURN(sps->pcm_sample_bit_depth_luma_minus1 + 1 <=
sps->bit_depth_y);
READ_BITS_OR_RETURN(4, &sps->pcm_sample_bit_depth_chroma_minus1);
TRUE_OR_RETURN(sps->pcm_sample_bit_depth_chroma_minus1 + 1 <=
sps->bit_depth_c);
READ_UE_OR_RETURN(&sps->log2_min_pcm_luma_coding_block_size_minus3);
IN_RANGE_OR_RETURN(sps->log2_min_pcm_luma_coding_block_size_minus3, 0, 2);
int log2_min_ipcm_cb_size_y =
sps->log2_min_pcm_luma_coding_block_size_minus3 + 3;
IN_RANGE_OR_RETURN(log2_min_ipcm_cb_size_y, std::min(min_cb_log2_size_y, 5),
std::min(sps->ctb_log2_size_y, 5));
READ_UE_OR_RETURN(&sps->log2_diff_max_min_pcm_luma_coding_block_size);
TRUE_OR_RETURN(sps->log2_diff_max_min_pcm_luma_coding_block_size <=
std::min(sps->ctb_log2_size_y, 5) - log2_min_ipcm_cb_size_y);
READ_BOOL_OR_RETURN(&sps->pcm_loop_filter_disabled_flag);
}
READ_UE_OR_RETURN(&sps->num_short_term_ref_pic_sets);
IN_RANGE_OR_RETURN(sps->num_short_term_ref_pic_sets, 0,
kMaxShortTermRefPicSets);
for (int i = 0; i < sps->num_short_term_ref_pic_sets; ++i) {
res = ParseStRefPicSet(i, *sps, &sps->st_ref_pic_set[i]);
if (res != kOk)
return res;
}
READ_BOOL_OR_RETURN(&sps->long_term_ref_pics_present_flag);
if (sps->long_term_ref_pics_present_flag) {
READ_UE_OR_RETURN(&sps->num_long_term_ref_pics_sps);
IN_RANGE_OR_RETURN(sps->num_long_term_ref_pics_sps, 0,
kMaxLongTermRefPicSets);
for (int i = 0; i < sps->num_long_term_ref_pics_sps; ++i) {
READ_BITS_OR_RETURN(sps->log2_max_pic_order_cnt_lsb_minus4 + 4,
&sps->lt_ref_pic_poc_lsb_sps[i]);
READ_BOOL_OR_RETURN(&sps->used_by_curr_pic_lt_sps_flag[i]);
}
}
READ_BOOL_OR_RETURN(&sps->sps_temporal_mvp_enabled_flag);
READ_BOOL_OR_RETURN(&sps->strong_intra_smoothing_enabled_flag);
bool vui_parameters_present_flag;
READ_BOOL_OR_RETURN(&vui_parameters_present_flag);
if (vui_parameters_present_flag) {
res = ParseVuiParameters(*sps, &sps->vui_parameters);
if (res != kOk)
return res;
// Verify cropping parameters. We already verified the conformance window
// ranges previously.
base::CheckedNumeric<int> width_crop =
sps->conf_win_left_offset + sps->conf_win_right_offset;
width_crop += sps->vui_parameters.def_disp_win_left_offset;
width_crop += sps->vui_parameters.def_disp_win_right_offset;
width_crop *= sps->sub_width_c;
if (!width_crop.IsValid())
return kInvalidStream;
TRUE_OR_RETURN(width_crop.ValueOrDefault(0) <
sps->pic_width_in_luma_samples);
base::CheckedNumeric<int> height_crop =
sps->conf_win_top_offset + sps->conf_win_bottom_offset;
height_crop += sps->vui_parameters.def_disp_win_top_offset;
height_crop += sps->vui_parameters.def_disp_win_bottom_offset;
height_crop *= sps->sub_height_c;
if (!height_crop.IsValid())
return kInvalidStream;
TRUE_OR_RETURN(height_crop.ValueOrDefault(0) <
sps->pic_height_in_luma_samples);
}
READ_BOOL_OR_RETURN(&sps->sps_extension_present_flag);
if (sps->sps_extension_present_flag) {
READ_BOOL_OR_RETURN(&sps->sps_range_extension_flag);
READ_BOOL_OR_RETURN(&sps->sps_multilayer_extension_flag);
READ_BOOL_OR_RETURN(&sps->sps_3d_extension_flag);
READ_BOOL_OR_RETURN(&sps->sps_scc_extension_flag);
SKIP_BITS_OR_RETURN(4); // sps_extension_4bits
}
if (sps->sps_range_extension_flag) {
READ_BOOL_OR_RETURN(&sps->transform_skip_rotation_enabled_flag);
READ_BOOL_OR_RETURN(&sps->transform_skip_context_enabled_flag);
READ_BOOL_OR_RETURN(&sps->implicit_rdpcm_enabled_flag);
READ_BOOL_OR_RETURN(&sps->explicit_rdpcm_enabled_flag);
READ_BOOL_OR_RETURN(&sps->extended_precision_processing_flag);
READ_BOOL_OR_RETURN(&sps->intra_smoothing_disabled_flag);
READ_BOOL_OR_RETURN(&sps->high_precision_offsets_enabled_flag);
READ_BOOL_OR_RETURN(&sps->persistent_rice_adaptation_enabled_flag);
READ_BOOL_OR_RETURN(&sps->cabac_bypass_alignment_enabled_flag);
}
if (sps->sps_3d_extension_flag) {
DVLOG(1) << "HEVC 3D extension not supported";
return kInvalidStream;
}
if (sps->sps_scc_extension_flag) {
DVLOG(1) << "HEVC SCC extension not supported";
return kInvalidStream;
}
sps->wp_offset_half_range_y = 1 << (sps->high_precision_offsets_enabled_flag
? sps->bit_depth_luma_minus8 + 7
: 7);
sps->wp_offset_half_range_c = 1 << (sps->high_precision_offsets_enabled_flag
? sps->bit_depth_chroma_minus8 + 7
: 7);
// If an SPS with the same id already exists, replace it.
*sps_id = sps->sps_seq_parameter_set_id;
active_sps_[*sps_id] = std::move(sps);
return res;
}
H265Parser::Result H265Parser::ParsePPS(const H265NALU& nalu, int* pps_id) {
// 7.4.3.3
DVLOG(4) << "Parsing PPS";
Result res = kOk;
DCHECK(pps_id);
*pps_id = -1;
std::unique_ptr<H265PPS> pps = std::make_unique<H265PPS>();
pps->temporal_id = nalu.nuh_temporal_id_plus1 - 1;
// Set these defaults if they are not present here.
pps->uniform_spacing_flag = true;
pps->loop_filter_across_tiles_enabled_flag = true;
// 7.4.3.3.1
READ_UE_OR_RETURN(&pps->pps_pic_parameter_set_id);
IN_RANGE_OR_RETURN(pps->pps_pic_parameter_set_id, 0, 63);
READ_UE_OR_RETURN(&pps->pps_seq_parameter_set_id);
IN_RANGE_OR_RETURN(pps->pps_seq_parameter_set_id, 0, 15);
const H265SPS* sps = GetSPS(pps->pps_seq_parameter_set_id);
if (!sps) {
return kMissingParameterSet;
}
READ_BOOL_OR_RETURN(&pps->dependent_slice_segments_enabled_flag);
READ_BOOL_OR_RETURN(&pps->output_flag_present_flag);
READ_BITS_OR_RETURN(3, &pps->num_extra_slice_header_bits);
READ_BOOL_OR_RETURN(&pps->sign_data_hiding_enabled_flag);
READ_BOOL_OR_RETURN(&pps->cabac_init_present_flag);
READ_UE_OR_RETURN(&pps->num_ref_idx_l0_default_active_minus1);
IN_RANGE_OR_RETURN(pps->num_ref_idx_l0_default_active_minus1, 0,
kMaxRefIdxActive - 1);
READ_UE_OR_RETURN(&pps->num_ref_idx_l1_default_active_minus1);
IN_RANGE_OR_RETURN(pps->num_ref_idx_l1_default_active_minus1, 0,
kMaxRefIdxActive - 1);
READ_SE_OR_RETURN(&pps->init_qp_minus26);
pps->qp_bd_offset_y = 6 * sps->bit_depth_luma_minus8;
IN_RANGE_OR_RETURN(pps->init_qp_minus26, -(26 + pps->qp_bd_offset_y), 25);
READ_BOOL_OR_RETURN(&pps->constrained_intra_pred_flag);
READ_BOOL_OR_RETURN(&pps->transform_skip_enabled_flag);
READ_BOOL_OR_RETURN(&pps->cu_qp_delta_enabled_flag);
if (pps->cu_qp_delta_enabled_flag) {
READ_UE_OR_RETURN(&pps->diff_cu_qp_delta_depth);
IN_RANGE_OR_RETURN(pps->diff_cu_qp_delta_depth, 0,
sps->log2_diff_max_min_luma_coding_block_size);
}
READ_SE_OR_RETURN(&pps->pps_cb_qp_offset);
IN_RANGE_OR_RETURN(pps->pps_cb_qp_offset, -12, 12);
READ_SE_OR_RETURN(&pps->pps_cr_qp_offset);
IN_RANGE_OR_RETURN(pps->pps_cr_qp_offset, -12, 12);
READ_BOOL_OR_RETURN(&pps->pps_slice_chroma_qp_offsets_present_flag);
READ_BOOL_OR_RETURN(&pps->weighted_pred_flag);
READ_BOOL_OR_RETURN(&pps->weighted_bipred_flag);
READ_BOOL_OR_RETURN(&pps->transquant_bypass_enabled_flag);
READ_BOOL_OR_RETURN(&pps->tiles_enabled_flag);
READ_BOOL_OR_RETURN(&pps->entropy_coding_sync_enabled_flag);
if (pps->tiles_enabled_flag) {
READ_UE_OR_RETURN(&pps->num_tile_columns_minus1);
IN_RANGE_OR_RETURN(pps->num_tile_columns_minus1, 0,
sps->pic_width_in_ctbs_y - 1);
TRUE_OR_RETURN(pps->num_tile_columns_minus1 <
H265PPS::kMaxNumTileColumnWidth);
READ_UE_OR_RETURN(&pps->num_tile_rows_minus1);
IN_RANGE_OR_RETURN(pps->num_tile_rows_minus1, 0,
sps->pic_height_in_ctbs_y - 1);
TRUE_OR_RETURN((pps->num_tile_columns_minus1 != 0) ||
(pps->num_tile_rows_minus1 != 0));
TRUE_OR_RETURN(pps->num_tile_rows_minus1 < H265PPS::kMaxNumTileRowHeight);
READ_BOOL_OR_RETURN(&pps->uniform_spacing_flag);
if (!pps->uniform_spacing_flag) {
pps->column_width_minus1[pps->num_tile_columns_minus1] =
sps->pic_width_in_ctbs_y - 1;
for (int i = 0; i < pps->num_tile_columns_minus1; ++i) {
READ_UE_OR_RETURN(&pps->column_width_minus1[i]);
IN_RANGE_OR_RETURN(
pps->column_width_minus1[i], 0,
pps->column_width_minus1[pps->num_tile_columns_minus1] - 1);
pps->column_width_minus1[pps->num_tile_columns_minus1] -=
pps->column_width_minus1[i] + 1;
}
pps->row_height_minus1[pps->num_tile_rows_minus1] =
sps->pic_height_in_ctbs_y - 1;
for (int i = 0; i < pps->num_tile_rows_minus1; ++i) {
READ_UE_OR_RETURN(&pps->row_height_minus1[i]);
IN_RANGE_OR_RETURN(
pps->row_height_minus1[i], 0,
pps->row_height_minus1[pps->num_tile_rows_minus1] - 1);
pps->row_height_minus1[pps->num_tile_rows_minus1] -=
pps->row_height_minus1[i] + 1;
}
}
READ_BOOL_OR_RETURN(&pps->loop_filter_across_tiles_enabled_flag);
}
READ_BOOL_OR_RETURN(&pps->pps_loop_filter_across_slices_enabled_flag);
READ_BOOL_OR_RETURN(&pps->deblocking_filter_control_present_flag);
if (pps->deblocking_filter_control_present_flag) {
READ_BOOL_OR_RETURN(&pps->deblocking_filter_override_enabled_flag);
READ_BOOL_OR_RETURN(&pps->pps_deblocking_filter_disabled_flag);
if (!pps->pps_deblocking_filter_disabled_flag) {
READ_SE_OR_RETURN(&pps->pps_beta_offset_div2);
IN_RANGE_OR_RETURN(pps->pps_beta_offset_div2, -6, 6);
READ_SE_OR_RETURN(&pps->pps_tc_offset_div2);
IN_RANGE_OR_RETURN(pps->pps_tc_offset_div2, -6, 6);
}
}
READ_BOOL_OR_RETURN(&pps->pps_scaling_list_data_present_flag);
if (pps->pps_scaling_list_data_present_flag) {
res = ParseScalingListData(&pps->scaling_list_data);
if (res != kOk)
return res;
}
READ_BOOL_OR_RETURN(&pps->lists_modification_present_flag);
READ_UE_OR_RETURN(&pps->log2_parallel_merge_level_minus2);
IN_RANGE_OR_RETURN(pps->log2_parallel_merge_level_minus2, 0,
sps->ctb_log2_size_y - 2);
READ_BOOL_OR_RETURN(&pps->slice_segment_header_extension_present_flag);
READ_BOOL_OR_RETURN(&pps->pps_extension_present_flag);
if (pps->pps_extension_present_flag) {
READ_BOOL_OR_RETURN(&pps->pps_range_extension_flag);
READ_BOOL_OR_RETURN(&pps->pps_multilayer_extension_flag);
READ_BOOL_OR_RETURN(&pps->pps_3d_extension_flag);
READ_BOOL_OR_RETURN(&pps->pps_scc_extension_flag);
SKIP_BITS_OR_RETURN(4); // pps_extension_4bits
}
if (pps->pps_range_extension_flag) {
if (pps->transform_skip_enabled_flag) {
READ_UE_OR_RETURN(&pps->log2_max_transform_skip_block_size_minus2);
IN_RANGE_OR_RETURN(pps->log2_max_transform_skip_block_size_minus2, 0, 3);
}
READ_BOOL_OR_RETURN(&pps->cross_component_prediction_enabled_flag);
READ_BOOL_OR_RETURN(&pps->chroma_qp_offset_list_enabled_flag);
if (pps->chroma_qp_offset_list_enabled_flag) {
READ_UE_OR_RETURN(&pps->diff_cu_chroma_qp_offset_depth);
IN_RANGE_OR_RETURN(pps->diff_cu_chroma_qp_offset_depth, 0,
sps->log2_diff_max_min_luma_coding_block_size);
READ_UE_OR_RETURN(&pps->chroma_qp_offset_list_len_minus1);
IN_RANGE_OR_RETURN(pps->chroma_qp_offset_list_len_minus1, 0, 5);
for (int i = 0; i <= pps->chroma_qp_offset_list_len_minus1; i++) {
READ_SE_OR_RETURN(&pps->cb_qp_offset_list[i]);
IN_RANGE_OR_RETURN(pps->cb_qp_offset_list[i], -12, 12);
READ_SE_OR_RETURN(&pps->cr_qp_offset_list[i]);
IN_RANGE_OR_RETURN(pps->cr_qp_offset_list[i], -12, 12);
}
}
READ_UE_OR_RETURN(&pps->log2_sao_offset_scale_luma);
IN_RANGE_OR_RETURN(pps->log2_sao_offset_scale_luma, 0,
std::max(sps->bit_depth_luma_minus8 - 2, 0));
READ_UE_OR_RETURN(&pps->log2_sao_offset_scale_chroma);
IN_RANGE_OR_RETURN(pps->log2_sao_offset_scale_chroma, 0,
std::max(sps->bit_depth_chroma_minus8 - 2, 0));
}
if (pps->pps_3d_extension_flag) {
DVLOG(1) << "HEVC 3D extension not supported";
return kInvalidStream;
}
if (pps->pps_scc_extension_flag) {
DVLOG(1) << "HEVC SCC extension not supported";
return kInvalidStream;
}
// If a PPS with the same id already exists, replace it.
*pps_id = pps->pps_pic_parameter_set_id;
active_pps_[*pps_id] = std::move(pps);
return res;
}
const H265VPS* H265Parser::GetVPS(int vps_id) const {
auto it = active_vps_.find(vps_id);
if (it == active_vps_.end()) {
DVLOG(1) << "Requested a nonexistent VPS id " << vps_id;
return nullptr;
}
return it->second.get();
}
const H265SPS* H265Parser::GetSPS(int sps_id) const {
auto it = active_sps_.find(sps_id);
if (it == active_sps_.end()) {
DVLOG(1) << "Requested a nonexistent SPS id " << sps_id;
return nullptr;
}
return it->second.get();
}
const H265PPS* H265Parser::GetPPS(int pps_id) const {
auto it = active_pps_.find(pps_id);
if (it == active_pps_.end()) {
DVLOG(1) << "Requested a nonexistent PPS id " << pps_id;
return nullptr;
}
return it->second.get();
}
H265Parser::Result H265Parser::ParseSliceHeaderForPictureParameterSets(
const H265NALU& nalu,
int* pps_id) {
// 7.4.7 Slice segment header
DVLOG(4) << "Parsing slice header for pps";
H265SliceHeader shdr;
READ_BOOL_OR_RETURN(&shdr.first_slice_segment_in_pic_flag);
shdr.irap_pic = (nalu.nal_unit_type >= H265NALU::BLA_W_LP &&
nalu.nal_unit_type <= H265NALU::RSV_IRAP_VCL23);
if (shdr.irap_pic) {
READ_BOOL_OR_RETURN(&shdr.no_output_of_prior_pics_flag);
}
READ_UE_OR_RETURN(&shdr.slice_pic_parameter_set_id);
IN_RANGE_OR_RETURN(shdr.slice_pic_parameter_set_id, 0, 63);
if (pps_id) {
*pps_id = shdr.slice_pic_parameter_set_id;
}
return kOk;
}
H265Parser::Result H265Parser::ParseSliceHeader(const H265NALU& nalu,
H265SliceHeader* shdr,
H265SliceHeader* prior_shdr) {
// 7.4.7 Slice segment header
DVLOG(4) << "Parsing slice header";
Result res = kOk;
const H265SPS* sps;
const H265PPS* pps;
DCHECK(shdr);
shdr->nal_unit_type = nalu.nal_unit_type;
shdr->nalu_data = nalu.data.get();
shdr->nalu_size = nalu.size;
READ_BOOL_OR_RETURN(&shdr->first_slice_segment_in_pic_flag);
shdr->irap_pic = (shdr->nal_unit_type >= H265NALU::BLA_W_LP &&
shdr->nal_unit_type <= H265NALU::RSV_IRAP_VCL23);
if (shdr->irap_pic) {
READ_BOOL_OR_RETURN(&shdr->no_output_of_prior_pics_flag);
}
READ_UE_OR_RETURN(&shdr->slice_pic_parameter_set_id);
IN_RANGE_OR_RETURN(shdr->slice_pic_parameter_set_id, 0, 63);
pps = GetPPS(shdr->slice_pic_parameter_set_id);
if (!pps) {
return kMissingParameterSet;
}
sps = GetSPS(pps->pps_seq_parameter_set_id);
DCHECK(sps); // We already validated this when we parsed the PPS.
if (!shdr->first_slice_segment_in_pic_flag) {
if (pps->dependent_slice_segments_enabled_flag)
READ_BOOL_OR_RETURN(&shdr->dependent_slice_segment_flag);
READ_BITS_OR_RETURN(base::bits::Log2Ceiling(sps->pic_size_in_ctbs_y),
&shdr->slice_segment_address);
IN_RANGE_OR_RETURN(shdr->slice_segment_address, 0,
sps->pic_size_in_ctbs_y - 1);
}
if (shdr->dependent_slice_segment_flag) {
if (!prior_shdr) {
DVLOG(1) << "Cannot parse dependent slice w/out prior slice data";
return kInvalidStream;
}
// Copy everything in the structure starting at |slice_type| going forward.
// This is copying the dependent slice data that we do not parse below.
size_t skip_amount = offsetof(H265SliceHeader, slice_type);
memcpy(reinterpret_cast<uint8_t*>(shdr) + skip_amount,
reinterpret_cast<uint8_t*>(prior_shdr) + skip_amount,
sizeof(H265SliceHeader) - skip_amount);
// We also need to validate the fields that have conditions that depend on
// anything unique in this slice (i.e. anything already parsed).
if ((shdr->irap_pic ||
sps->sps_max_dec_pic_buffering_minus1[pps->temporal_id] == 0) &&
nalu.nuh_layer_id == 0) {
TRUE_OR_RETURN(shdr->slice_type == 2);
}
} else {
// Set these defaults if they are not present here.
shdr->pic_output_flag = 1;
shdr->num_ref_idx_l0_active_minus1 =
pps->num_ref_idx_l0_default_active_minus1;
shdr->num_ref_idx_l1_active_minus1 =
pps->num_ref_idx_l1_default_active_minus1;
shdr->collocated_from_l0_flag = 1;
shdr->slice_deblocking_filter_disabled_flag =
pps->pps_deblocking_filter_disabled_flag;
shdr->slice_beta_offset_div2 = pps->pps_beta_offset_div2;
shdr->slice_tc_offset_div2 = pps->pps_tc_offset_div2;
shdr->slice_loop_filter_across_slices_enabled_flag =
pps->pps_loop_filter_across_slices_enabled_flag;
shdr->curr_rps_idx = sps->num_short_term_ref_pic_sets;
// slice_reserved_flag
SKIP_BITS_OR_RETURN(pps->num_extra_slice_header_bits);
READ_UE_OR_RETURN(&shdr->slice_type);
if ((shdr->irap_pic ||
sps->sps_max_dec_pic_buffering_minus1[pps->temporal_id] == 0) &&
nalu.nuh_layer_id == 0) {
TRUE_OR_RETURN(shdr->slice_type == 2);
}
if (pps->output_flag_present_flag)
READ_BOOL_OR_RETURN(&shdr->pic_output_flag);
if (sps->separate_colour_plane_flag) {
READ_BITS_OR_RETURN(2, &shdr->colour_plane_id);
IN_RANGE_OR_RETURN(shdr->colour_plane_id, 0, 2);
}
if (shdr->nal_unit_type != H265NALU::IDR_W_RADL &&
shdr->nal_unit_type != H265NALU::IDR_N_LP) {
READ_BITS_OR_RETURN(sps->log2_max_pic_order_cnt_lsb_minus4 + 4,
&shdr->slice_pic_order_cnt_lsb);
IN_RANGE_OR_RETURN(shdr->slice_pic_order_cnt_lsb, 0,
sps->max_pic_order_cnt_lsb - 1);
READ_BOOL_OR_RETURN(&shdr->short_term_ref_pic_set_sps_flag);
if (!shdr->short_term_ref_pic_set_sps_flag) {
off_t bits_left_prior = br_.NumBitsLeft();
size_t num_epb_prior = br_.NumEmulationPreventionBytesRead();
res = ParseStRefPicSet(sps->num_short_term_ref_pic_sets, *sps,
&shdr->st_ref_pic_set, true);
if (res != kOk)
return res;
shdr->st_rps_bits =
(bits_left_prior - br_.NumBitsLeft()) -
8 * (br_.NumEmulationPreventionBytesRead() - num_epb_prior);
} else if (sps->num_short_term_ref_pic_sets > 1) {
READ_BITS_OR_RETURN(
base::bits::Log2Ceiling(sps->num_short_term_ref_pic_sets),
&shdr->short_term_ref_pic_set_idx);
IN_RANGE_OR_RETURN(shdr->short_term_ref_pic_set_idx, 0,
sps->num_short_term_ref_pic_sets - 1);
}
if (shdr->short_term_ref_pic_set_sps_flag)
shdr->curr_rps_idx = shdr->short_term_ref_pic_set_idx;
if (sps->long_term_ref_pics_present_flag) {
off_t bits_left_prior = br_.NumBitsLeft();
size_t num_epb_prior = br_.NumEmulationPreventionBytesRead();
if (sps->num_long_term_ref_pics_sps > 0) {
READ_UE_OR_RETURN(&shdr->num_long_term_sps);
IN_RANGE_OR_RETURN(shdr->num_long_term_sps, 0,
sps->num_long_term_ref_pics_sps);
}
READ_UE_OR_RETURN(&shdr->num_long_term_pics);
if (nalu.nuh_layer_id == 0) {
TRUE_OR_RETURN(
shdr->num_long_term_pics <=
(sps->sps_max_dec_pic_buffering_minus1[pps->temporal_id] -
shdr->GetStRefPicSet(sps).num_negative_pics -
shdr->GetStRefPicSet(sps).num_positive_pics -
shdr->num_long_term_sps));
}
IN_RANGE_OR_RETURN(shdr->num_long_term_pics, 0,
kMaxLongTermRefPicSets - shdr->num_long_term_sps);
for (int i = 0; i < shdr->num_long_term_sps + shdr->num_long_term_pics;
++i) {
if (i < shdr->num_long_term_sps) {
int lt_idx_sps = 0;
if (sps->num_long_term_ref_pics_sps > 1) {
READ_BITS_OR_RETURN(
base::bits::Log2Ceiling(sps->num_long_term_ref_pics_sps),
<_idx_sps);
IN_RANGE_OR_RETURN(lt_idx_sps, 0,
sps->num_long_term_ref_pics_sps - 1);
}
shdr->poc_lsb_lt[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
shdr->used_by_curr_pic_lt[i] =
sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
} else {
READ_BITS_OR_RETURN(sps->log2_max_pic_order_cnt_lsb_minus4 + 4,
&shdr->poc_lsb_lt[i]);
READ_BOOL_OR_RETURN(&shdr->used_by_curr_pic_lt[i]);
}
READ_BOOL_OR_RETURN(&shdr->delta_poc_msb_present_flag[i]);
if (shdr->delta_poc_msb_present_flag[i]) {
READ_UE_OR_RETURN(&shdr->delta_poc_msb_cycle_lt[i]);
IN_RANGE_OR_RETURN(
shdr->delta_poc_msb_cycle_lt[i], 0,
std::pow(2, 32 - sps->log2_max_pic_order_cnt_lsb_minus4 - 4));
// Equation 7-52.
if (i != 0 && i != shdr->num_long_term_sps) {
shdr->delta_poc_msb_cycle_lt[i] =
shdr->delta_poc_msb_cycle_lt[i] +
shdr->delta_poc_msb_cycle_lt[i - 1];
}
}
}
shdr->lt_rps_bits =
(bits_left_prior - br_.NumBitsLeft()) -
8 * (br_.NumEmulationPreventionBytesRead() - num_epb_prior);
}
if (sps->sps_temporal_mvp_enabled_flag)
READ_BOOL_OR_RETURN(&shdr->slice_temporal_mvp_enabled_flag);
}
if (sps->sample_adaptive_offset_enabled_flag) {
READ_BOOL_OR_RETURN(&shdr->slice_sao_luma_flag);
if (sps->chroma_array_type != 0)
READ_BOOL_OR_RETURN(&shdr->slice_sao_chroma_flag);
}
if (shdr->IsPSlice() || shdr->IsBSlice()) {
READ_BOOL_OR_RETURN(&shdr->num_ref_idx_active_override_flag);
if (shdr->num_ref_idx_active_override_flag) {
READ_UE_OR_RETURN(&shdr->num_ref_idx_l0_active_minus1);
IN_RANGE_OR_RETURN(shdr->num_ref_idx_l0_active_minus1, 0,
kMaxRefIdxActive - 1);
if (shdr->IsBSlice()) {
READ_UE_OR_RETURN(&shdr->num_ref_idx_l1_active_minus1);
IN_RANGE_OR_RETURN(shdr->num_ref_idx_l1_active_minus1, 0,
kMaxRefIdxActive - 1);
}
}
shdr->num_pic_total_curr = 0;
const H265StRefPicSet& st_ref_pic = shdr->GetStRefPicSet(sps);
for (int i = 0; i < st_ref_pic.num_negative_pics; ++i) {
if (st_ref_pic.used_by_curr_pic_s0[i])
shdr->num_pic_total_curr++;
}
for (int i = 0; i < st_ref_pic.num_positive_pics; ++i) {
if (st_ref_pic.used_by_curr_pic_s1[i])
shdr->num_pic_total_curr++;
}
for (int i = 0; i < shdr->num_long_term_sps + shdr->num_long_term_pics;
++i) {
if (shdr->used_by_curr_pic_lt[i])
shdr->num_pic_total_curr++;
}
TRUE_OR_RETURN(shdr->num_pic_total_curr);
if (pps->lists_modification_present_flag &&
shdr->num_pic_total_curr > 1) {
res = ParseRefPicListsModifications(*shdr,
&shdr->ref_pic_lists_modification);
if (res != kOk)
return res;
}
if (shdr->IsBSlice())
READ_BOOL_OR_RETURN(&shdr->mvd_l1_zero_flag);
if (pps->cabac_init_present_flag)
READ_BOOL_OR_RETURN(&shdr->cabac_init_flag);
if (shdr->slice_temporal_mvp_enabled_flag) {
if (shdr->IsBSlice())
READ_BOOL_OR_RETURN(&shdr->collocated_from_l0_flag);
if ((shdr->collocated_from_l0_flag &&
shdr->num_ref_idx_l0_active_minus1 > 0) ||
(!shdr->collocated_from_l0_flag &&
shdr->num_ref_idx_l1_active_minus1 > 0)) {
READ_UE_OR_RETURN(&shdr->collocated_ref_idx);
if ((shdr->IsPSlice() || shdr->IsBSlice()) &&
shdr->collocated_from_l0_flag) {
IN_RANGE_OR_RETURN(shdr->collocated_ref_idx, 0,
shdr->num_ref_idx_l0_active_minus1);
}
if (shdr->IsBSlice() && !shdr->collocated_from_l0_flag) {
IN_RANGE_OR_RETURN(shdr->collocated_ref_idx, 0,
shdr->num_ref_idx_l1_active_minus1);
}
}
}
if ((pps->weighted_pred_flag && shdr->IsPSlice()) ||
(pps->weighted_bipred_flag && shdr->IsBSlice())) {
res = ParsePredWeightTable(*sps, *shdr, &shdr->pred_weight_table);
if (res != kOk)
return res;
}
READ_UE_OR_RETURN(&shdr->five_minus_max_num_merge_cand);
IN_RANGE_OR_RETURN(5 - shdr->five_minus_max_num_merge_cand, 1, 5);
}
READ_SE_OR_RETURN(&shdr->slice_qp_delta);
IN_RANGE_OR_RETURN(26 + pps->init_qp_minus26 + shdr->slice_qp_delta,
-pps->qp_bd_offset_y, 51);
if (pps->pps_slice_chroma_qp_offsets_present_flag) {
READ_SE_OR_RETURN(&shdr->slice_cb_qp_offset);
IN_RANGE_OR_RETURN(shdr->slice_cb_qp_offset, -12, 12);
IN_RANGE_OR_RETURN(pps->pps_cb_qp_offset + shdr->slice_cb_qp_offset, -12,
12);
READ_SE_OR_RETURN(&shdr->slice_cr_qp_offset);
IN_RANGE_OR_RETURN(shdr->slice_cr_qp_offset, -12, 12);
IN_RANGE_OR_RETURN(pps->pps_cr_qp_offset + shdr->slice_cr_qp_offset, -12,
12);
}
// pps_slice_act_qp_offsets_present_flag is zero, we don't support SCC ext.
if (pps->chroma_qp_offset_list_enabled_flag)
SKIP_BITS_OR_RETURN(1); // cu_chroma_qp_offset_enabled_flag
bool deblocking_filter_override_flag = false;
if (pps->deblocking_filter_override_enabled_flag)
READ_BOOL_OR_RETURN(&deblocking_filter_override_flag);
if (deblocking_filter_override_flag) {
READ_BOOL_OR_RETURN(&shdr->slice_deblocking_filter_disabled_flag);
if (!shdr->slice_deblocking_filter_disabled_flag) {
READ_SE_OR_RETURN(&shdr->slice_beta_offset_div2);
IN_RANGE_OR_RETURN(shdr->slice_beta_offset_div2, -6, 6);
READ_SE_OR_RETURN(&shdr->slice_tc_offset_div2);
IN_RANGE_OR_RETURN(shdr->slice_tc_offset_div2, -6, 6);
}
}
if (pps->pps_loop_filter_across_slices_enabled_flag &&
(shdr->slice_sao_luma_flag || shdr->slice_sao_chroma_flag ||
!shdr->slice_deblocking_filter_disabled_flag)) {
READ_BOOL_OR_RETURN(&shdr->slice_loop_filter_across_slices_enabled_flag);
}
}
if (pps->tiles_enabled_flag || pps->entropy_coding_sync_enabled_flag) {
int num_entry_point_offsets;
READ_UE_OR_RETURN(&num_entry_point_offsets);
if (!pps->tiles_enabled_flag) {
IN_RANGE_OR_RETURN(num_entry_point_offsets, 0,
sps->pic_height_in_ctbs_y - 1);
} else if (!pps->entropy_coding_sync_enabled_flag) {
IN_RANGE_OR_RETURN(
num_entry_point_offsets, 0,
(pps->num_tile_columns_minus1 + 1) * (pps->num_tile_rows_minus1 + 1) -
1);
} else { // both are true
IN_RANGE_OR_RETURN(
num_entry_point_offsets, 0,
(pps->num_tile_columns_minus1 + 1) * sps->pic_height_in_ctbs_y - 1);
}
if (num_entry_point_offsets > 0) {
int offset_len_minus1;
READ_UE_OR_RETURN(&offset_len_minus1);
IN_RANGE_OR_RETURN(offset_len_minus1, 0, 31);
SKIP_BITS_OR_RETURN(num_entry_point_offsets * (offset_len_minus1 + 1));
}
}
if (pps->slice_segment_header_extension_present_flag) {
int slice_segment_header_extension_length;
READ_UE_OR_RETURN(&slice_segment_header_extension_length);
IN_RANGE_OR_RETURN(slice_segment_header_extension_length, 0, 256);
SKIP_BITS_OR_RETURN(slice_segment_header_extension_length * 8);
}
if (prior_shdr && !shdr->first_slice_segment_in_pic_flag) {
// Validate the fields that must match between slice headers for the same
// picture.
EQ_OR_RETURN(shdr, prior_shdr, slice_pic_parameter_set_id);
EQ_OR_RETURN(shdr, prior_shdr, pic_output_flag);
EQ_OR_RETURN(shdr, prior_shdr, no_output_of_prior_pics_flag);
EQ_OR_RETURN(shdr, prior_shdr, slice_pic_order_cnt_lsb);
EQ_OR_RETURN(shdr, prior_shdr, short_term_ref_pic_set_sps_flag);
// All the other fields we need to compare are contiguous, so compare them
// as one memory range.
size_t block_start = offsetof(H265SliceHeader, short_term_ref_pic_set_idx);
size_t block_end = offsetof(H265SliceHeader, slice_sao_luma_flag);
TRUE_OR_RETURN(!memcmp(reinterpret_cast<uint8_t*>(shdr) + block_start,
reinterpret_cast<uint8_t*>(prior_shdr) + block_start,
block_end - block_start));
}
// byte_alignment()
SKIP_BITS_OR_RETURN(1); // alignment bit
int bits_left_to_align = br_.NumBitsLeft() % 8;
if (bits_left_to_align)
SKIP_BITS_OR_RETURN(bits_left_to_align);
shdr->header_emulation_prevention_bytes =
br_.NumEmulationPreventionBytesRead();
shdr->header_size = shdr->nalu_size -
shdr->header_emulation_prevention_bytes -
br_.NumBitsLeft() / 8;
return res;
}
// static
VideoCodecProfile H265Parser::ProfileIDCToVideoCodecProfile(int profile_idc) {
switch (profile_idc) {
case H265ProfileTierLevel::kProfileIdcMain:
return HEVCPROFILE_MAIN;
case H265ProfileTierLevel::kProfileIdcMain10:
return HEVCPROFILE_MAIN10;
case H265ProfileTierLevel::kProfileIdcMainStill:
return HEVCPROFILE_MAIN_STILL_PICTURE;
case H265ProfileTierLevel::kProfileIdcRangeExtensions:
return HEVCPROFILE_REXT;
case H265ProfileTierLevel::kProfileIdcHighThroughput:
return HEVCPROFILE_HIGH_THROUGHPUT;
case H265ProfileTierLevel::kProfileIdcMultiviewMain:
return HEVCPROFILE_MULTIVIEW_MAIN;
case H265ProfileTierLevel::kProfileIdcScalableMain:
return HEVCPROFILE_SCALABLE_MAIN;
case H265ProfileTierLevel::kProfileIdc3dMain:
return HEVCPROFILE_3D_MAIN;
case H265ProfileTierLevel::kProfileIdcScreenContentCoding:
return HEVCPROFILE_SCREEN_EXTENDED;
case H265ProfileTierLevel::kProfileIdcScalableRangeExtensions:
return HEVCPROFILE_SCALABLE_REXT;
case H265ProfileTierLevel::kProfileIdcHighThroughputScreenContentCoding:
return HEVCPROFILE_HIGH_THROUGHPUT_SCREEN_EXTENDED;
default:
DVLOG(1) << "unknown video profile: " << profile_idc;
return VIDEO_CODEC_PROFILE_UNKNOWN;
}
}
gfx::HdrMetadataCta861_3 H265SEIContentLightLevelInfo::ToGfx() const {
return gfx::HdrMetadataCta861_3(max_content_light_level,
max_picture_average_light_level);
}
gfx::HdrMetadataSmpteSt2086 H265SEIMasteringDisplayInfo::ToGfx() const {
constexpr auto kChromaDenominator = 50000.0f;
constexpr auto kLumaDenoninator = 10000.0f;
// display primaries are in G/B/R order in MDCV SEI.
return gfx::HdrMetadataSmpteSt2086(
{display_primaries[2][0] / kChromaDenominator,
display_primaries[2][1] / kChromaDenominator,
display_primaries[0][0] / kChromaDenominator,
display_primaries[0][1] / kChromaDenominator,
display_primaries[1][0] / kChromaDenominator,
display_primaries[1][1] / kChromaDenominator,
white_points[0] / kChromaDenominator,
white_points[1] / kChromaDenominator},
/*luminance_max=*/max_luminance / kLumaDenoninator,
/*luminance_min=*/min_luminance / kLumaDenoninator);
}
H265Parser::Result H265Parser::ParseProfileTierLevel(
bool profile_present,
int max_num_sub_layers_minus1,
H265ProfileTierLevel* profile_tier_level) {
// 7.4.4
DVLOG(4) << "Parsing profile_tier_level";
if (profile_present) {
int general_profile_space;
READ_BITS_OR_RETURN(2, &general_profile_space);
TRUE_OR_RETURN(general_profile_space == 0);
SKIP_BITS_OR_RETURN(1); // general_tier_flag
READ_BITS_OR_RETURN(5, &profile_tier_level->general_profile_idc);
IN_RANGE_OR_RETURN(profile_tier_level->general_profile_idc, 0, 11);
uint16_t general_profile_compatibility_flag_high16;
uint16_t general_profile_compatibility_flag_low16;
READ_BITS_OR_RETURN(16, &general_profile_compatibility_flag_high16);
READ_BITS_OR_RETURN(16, &general_profile_compatibility_flag_low16);
profile_tier_level->general_profile_compatibility_flags =
(general_profile_compatibility_flag_high16 << 16) +
general_profile_compatibility_flag_low16;
READ_BOOL_OR_RETURN(&profile_tier_level->general_progressive_source_flag);
READ_BOOL_OR_RETURN(&profile_tier_level->general_interlaced_source_flag);
if (!profile_tier_level->general_progressive_source_flag &&
profile_tier_level->general_interlaced_source_flag) {
DVLOG(1) << "Interlaced streams not supported";
return kUnsupportedStream;
}
READ_BOOL_OR_RETURN(
&profile_tier_level->general_non_packed_constraint_flag);
READ_BOOL_OR_RETURN(
&profile_tier_level->general_frame_only_constraint_flag);
SKIP_BITS_OR_RETURN(7); // general_reserved_zero_7bits
READ_BOOL_OR_RETURN(
&profile_tier_level->general_one_picture_only_constraint_flag);
SKIP_BITS_OR_RETURN(35); // general_reserved_zero_35bits
SKIP_BITS_OR_RETURN(1); // general_inbld_flag
}
READ_BITS_OR_RETURN(8, &profile_tier_level->general_level_idc);
bool sub_layer_profile_present_flag[8];
bool sub_layer_level_present_flag[8];
for (int i = 0; i < max_num_sub_layers_minus1; ++i) {
READ_BOOL_OR_RETURN(&sub_layer_profile_present_flag[i]);
READ_BOOL_OR_RETURN(&sub_layer_level_present_flag[i]);
}
if (max_num_sub_layers_minus1 > 0) {
for (int i = max_num_sub_layers_minus1; i < 8; i++) {
SKIP_BITS_OR_RETURN(2);
}
}
for (int i = 0; i < max_num_sub_layers_minus1; i++) {
if (sub_layer_profile_present_flag[i]) {
SKIP_BITS_OR_RETURN(2); // sub_layer_profile_space
SKIP_BITS_OR_RETURN(1); // sub_layer_tier_flag
SKIP_BITS_OR_RETURN(5); // sub_layer_profile_idc
SKIP_BITS_OR_RETURN(32); // sub_layer_profile_compatibility_flag
SKIP_BITS_OR_RETURN(2); // sub_layer_{progressive,interlaced}_source_flag
// Ignore sub_layer_non_packed_constraint_flag and
// sub_layer_frame_only_constraint_flag.
SKIP_BITS_OR_RETURN(2);
// Skip the compatibility flags, they are always 43 bits.
SKIP_BITS_OR_RETURN(43);
SKIP_BITS_OR_RETURN(1); // sub_layer_inbld_flag
}
if (sub_layer_level_present_flag[i]) {
SKIP_BITS_OR_RETURN(8); // sub_layer_level_idc
}
}
return kOk;
}
H265Parser::Result H265Parser::ParseScalingListData(
H265ScalingListData* scaling_list_data) {
for (int size_id = 0; size_id < 4; ++size_id) {
for (int matrix_id = 0; matrix_id < 6;
matrix_id += (size_id == 3) ? 3 : 1) {
bool scaling_list_pred_mode_flag;
READ_BOOL_OR_RETURN(&scaling_list_pred_mode_flag);
if (!scaling_list_pred_mode_flag) {
int scaling_list_pred_matrix_id_delta;
READ_UE_OR_RETURN(&scaling_list_pred_matrix_id_delta);
if (size_id <= 2) {
IN_RANGE_OR_RETURN(scaling_list_pred_matrix_id_delta, 0, matrix_id);
} else { // size_id == 3
IN_RANGE_OR_RETURN(scaling_list_pred_matrix_id_delta, 0,
matrix_id / 3);
}
if (scaling_list_pred_matrix_id_delta == 0) {
FillInDefaultScalingListData(scaling_list_data, size_id, matrix_id);
} else {
int ref_matrix_id = matrix_id - scaling_list_pred_matrix_id_delta *
(size_id == 3 ? 3 : 1);
uint8_t* dst;
uint8_t* src;
int count = H265ScalingListData::kScalingListSizeId1To3Count;
switch (size_id) {
case 0:
src = scaling_list_data->scaling_list_4x4[ref_matrix_id];
dst = scaling_list_data->scaling_list_4x4[matrix_id];
count = H265ScalingListData::kScalingListSizeId0Count;
break;
case 1:
src = scaling_list_data->scaling_list_8x8[ref_matrix_id];
dst = scaling_list_data->scaling_list_8x8[matrix_id];
break;
case 2:
src = scaling_list_data->scaling_list_16x16[ref_matrix_id];
dst = scaling_list_data->scaling_list_16x16[matrix_id];
break;
case 3:
src = scaling_list_data->scaling_list_32x32[ref_matrix_id];
dst = scaling_list_data->scaling_list_32x32[matrix_id];
break;
}
memcpy(dst, src, count * sizeof(*src));
if (size_id == 2) {
scaling_list_data->scaling_list_dc_coef_16x16[matrix_id] =
scaling_list_data->scaling_list_dc_coef_16x16[ref_matrix_id];
} else if (size_id == 3) {
scaling_list_data->scaling_list_dc_coef_32x32[matrix_id] =
scaling_list_data->scaling_list_dc_coef_32x32[ref_matrix_id];
}
}
} else {
int next_coef = 8;
int coef_num = std::min(64, (1 << (4 + (size_id << 1))));
if (size_id > 1) {
if (size_id == 2) {
int scaling_list_dc_coef_16x16_minus_8;
READ_SE_OR_RETURN(&scaling_list_dc_coef_16x16_minus_8);
IN_RANGE_OR_RETURN(scaling_list_dc_coef_16x16_minus_8, -7, 247);
// This is parsed as minus8;
scaling_list_data->scaling_list_dc_coef_16x16[matrix_id] =
scaling_list_dc_coef_16x16_minus_8 + 8;
next_coef =
scaling_list_data->scaling_list_dc_coef_16x16[matrix_id];
} else { // size_id == 3
int scaling_list_dc_coef_32x32_minus_8;
READ_SE_OR_RETURN(&scaling_list_dc_coef_32x32_minus_8);
IN_RANGE_OR_RETURN(scaling_list_dc_coef_32x32_minus_8, -7, 247);
// This is parsed as minus8;
scaling_list_data->scaling_list_dc_coef_32x32[matrix_id] =
scaling_list_dc_coef_32x32_minus_8 + 8;
next_coef =
scaling_list_data->scaling_list_dc_coef_32x32[matrix_id];
}
}
for (int i = 0; i < coef_num; ++i) {
int scaling_list_delta_coef;
READ_SE_OR_RETURN(&scaling_list_delta_coef);
IN_RANGE_OR_RETURN(scaling_list_delta_coef, -128, 127);
next_coef = (next_coef + scaling_list_delta_coef + 256) % 256;
switch (size_id) {
case 0:
scaling_list_data->scaling_list_4x4[matrix_id][i] = next_coef;
break;
case 1:
scaling_list_data->scaling_list_8x8[matrix_id][i] = next_coef;
break;
case 2:
scaling_list_data->scaling_list_16x16[matrix_id][i] = next_coef;
break;
case 3:
scaling_list_data->scaling_list_32x32[matrix_id][i] = next_coef;
break;
}
}
}
}
}
return kOk;
}
H265Parser::Result H265Parser::ParseStRefPicSet(int st_rps_idx,
const H265SPS& sps,
H265StRefPicSet* st_ref_pic_set,
bool is_slice_hdr) {
// 7.4.8
bool inter_ref_pic_set_prediction_flag = false;
if (st_rps_idx != 0) {
READ_BOOL_OR_RETURN(&inter_ref_pic_set_prediction_flag);
}
if (inter_ref_pic_set_prediction_flag) {
int delta_idx_minus1 = 0;
if (st_rps_idx == sps.num_short_term_ref_pic_sets) {
READ_UE_OR_RETURN(&delta_idx_minus1);
IN_RANGE_OR_RETURN(delta_idx_minus1, 0, st_rps_idx - 1);
}
int ref_rps_idx = st_rps_idx - (delta_idx_minus1 + 1);
int delta_rps_sign;
int abs_delta_rps_minus1;
READ_BOOL_OR_RETURN(&delta_rps_sign);
READ_UE_OR_RETURN(&abs_delta_rps_minus1);
IN_RANGE_OR_RETURN(abs_delta_rps_minus1, 0, 0x7FFF);
int delta_rps = (1 - 2 * delta_rps_sign) * (abs_delta_rps_minus1 + 1);
const H265StRefPicSet& ref_set = sps.st_ref_pic_set[ref_rps_idx];
if (is_slice_hdr) {
st_ref_pic_set->rps_idx_num_delta_pocs = ref_set.num_delta_pocs;
}
bool used_by_curr_pic_flag[kMaxShortTermRefPicSets];
bool use_delta_flag[kMaxShortTermRefPicSets];
// 7.4.8 - use_delta_flag defaults to 1 if not present.
std::fill_n(use_delta_flag, kMaxShortTermRefPicSets, true);
for (int j = 0; j <= ref_set.num_delta_pocs; j++) {
READ_BOOL_OR_RETURN(&used_by_curr_pic_flag[j]);
if (!used_by_curr_pic_flag[j]) {
READ_BOOL_OR_RETURN(&use_delta_flag[j]);
}
}
// Calculate delta_poc_s{0,1}, used_by_curr_pic_s{0,1}, num_negative_pics
// and num_positive_pics.
// Equation 7-61
int i = 0;
for (int j = ref_set.num_positive_pics - 1; j >= 0; --j) {
int d_poc = ref_set.delta_poc_s1[j] + delta_rps;
if (d_poc < 0 && use_delta_flag[ref_set.num_negative_pics + j]) {
st_ref_pic_set->delta_poc_s0[i] = d_poc;
st_ref_pic_set->used_by_curr_pic_s0[i++] =
used_by_curr_pic_flag[ref_set.num_negative_pics + j];
}
}
if (delta_rps < 0 && use_delta_flag[ref_set.num_delta_pocs]) {
st_ref_pic_set->delta_poc_s0[i] = delta_rps;
st_ref_pic_set->used_by_curr_pic_s0[i++] =
used_by_curr_pic_flag[ref_set.num_delta_pocs];
}
for (int j = 0; j < ref_set.num_negative_pics; ++j) {
int d_poc = ref_set.delta_poc_s0[j] + delta_rps;
if (d_poc < 0 && use_delta_flag[j]) {
st_ref_pic_set->delta_poc_s0[i] = d_poc;
st_ref_pic_set->used_by_curr_pic_s0[i++] = used_by_curr_pic_flag[j];
}
}
st_ref_pic_set->num_negative_pics = i;
// Equation 7-62
i = 0;
for (int j = ref_set.num_negative_pics - 1; j >= 0; --j) {
int d_poc = ref_set.delta_poc_s0[j] + delta_rps;
if (d_poc > 0 && use_delta_flag[j]) {
st_ref_pic_set->delta_poc_s1[i] = d_poc;
st_ref_pic_set->used_by_curr_pic_s1[i++] = used_by_curr_pic_flag[j];
}
}
if (delta_rps > 0 && use_delta_flag[ref_set.num_delta_pocs]) {
st_ref_pic_set->delta_poc_s1[i] = delta_rps;
st_ref_pic_set->used_by_curr_pic_s1[i++] =
used_by_curr_pic_flag[ref_set.num_delta_pocs];
}
for (int j = 0; j < ref_set.num_positive_pics; ++j) {
int d_poc = ref_set.delta_poc_s1[j] + delta_rps;
if (d_poc > 0 && use_delta_flag[ref_set.num_negative_pics + j]) {
st_ref_pic_set->delta_poc_s1[i] = d_poc;
st_ref_pic_set->used_by_curr_pic_s1[i++] =
used_by_curr_pic_flag[ref_set.num_negative_pics + j];
}
}
st_ref_pic_set->num_positive_pics = i;
IN_RANGE_OR_RETURN(
st_ref_pic_set->num_negative_pics, 0,
sps.sps_max_dec_pic_buffering_minus1[sps.sps_max_sub_layers_minus1]);
IN_RANGE_OR_RETURN(
st_ref_pic_set->num_positive_pics, 0,
sps.sps_max_dec_pic_buffering_minus1[sps.sps_max_sub_layers_minus1] -
st_ref_pic_set->num_negative_pics);
} else {
READ_UE_OR_RETURN(&st_ref_pic_set->num_negative_pics);
READ_UE_OR_RETURN(&st_ref_pic_set->num_positive_pics);
IN_RANGE_OR_RETURN(
st_ref_pic_set->num_negative_pics, 0,
sps.sps_max_dec_pic_buffering_minus1[sps.sps_max_sub_layers_minus1]);
IN_RANGE_OR_RETURN(
st_ref_pic_set->num_positive_pics, 0,
sps.sps_max_dec_pic_buffering_minus1[sps.sps_max_sub_layers_minus1] -
st_ref_pic_set->num_negative_pics);
for (int i = 0; i < st_ref_pic_set->num_negative_pics; ++i) {
int delta_poc_s0_minus1;
READ_UE_OR_RETURN(&delta_poc_s0_minus1);
IN_RANGE_OR_RETURN(delta_poc_s0_minus1, 0, 0x7FFF);
if (i == 0) {
st_ref_pic_set->delta_poc_s0[i] = -(delta_poc_s0_minus1 + 1);
} else {
st_ref_pic_set->delta_poc_s0[i] =
st_ref_pic_set->delta_poc_s0[i - 1] - (delta_poc_s0_minus1 + 1);
}
READ_BOOL_OR_RETURN(&st_ref_pic_set->used_by_curr_pic_s0[i]);
}
for (int i = 0; i < st_ref_pic_set->num_positive_pics; ++i) {
int delta_poc_s1_minus1;
READ_UE_OR_RETURN(&delta_poc_s1_minus1);
IN_RANGE_OR_RETURN(delta_poc_s1_minus1, 0, 0x7FFF);
if (i == 0) {
st_ref_pic_set->delta_poc_s1[i] = delta_poc_s1_minus1 + 1;
} else {
st_ref_pic_set->delta_poc_s1[i] =
st_ref_pic_set->delta_poc_s1[i - 1] + delta_poc_s1_minus1 + 1;
}
READ_BOOL_OR_RETURN(&st_ref_pic_set->used_by_curr_pic_s1[i]);
}
}
// Calculate num_delta_pocs.
st_ref_pic_set->num_delta_pocs =
st_ref_pic_set->num_negative_pics + st_ref_pic_set->num_positive_pics;
return kOk;
}
H265Parser::Result H265Parser::ParseVuiParameters(const H265SPS& sps,
H265VUIParameters* vui) {
Result res = kOk;
bool aspect_ratio_info_present_flag;
READ_BOOL_OR_RETURN(&aspect_ratio_info_present_flag);
if (aspect_ratio_info_present_flag) {
int aspect_ratio_idc;
READ_BITS_OR_RETURN(8, &aspect_ratio_idc);
constexpr int kExtendedSar = 255;
if (aspect_ratio_idc == kExtendedSar) {
READ_BITS_OR_RETURN(16, &vui->sar_width);
READ_BITS_OR_RETURN(16, &vui->sar_height);
} else {
const int max_aspect_ratio_idc = std::size(kTableSarWidth) - 1;
IN_RANGE_OR_RETURN(aspect_ratio_idc, 0, max_aspect_ratio_idc);
vui->sar_width = kTableSarWidth[aspect_ratio_idc];
vui->sar_height = kTableSarHeight[aspect_ratio_idc];
}
}
int data;
// Read and ignore overscan info.
READ_BOOL_OR_RETURN(&data); // overscan_info_present_flag
if (data)
SKIP_BITS_OR_RETURN(1); // overscan_appropriate_flag
bool video_signal_type_present_flag;
READ_BOOL_OR_RETURN(&video_signal_type_present_flag);
if (video_signal_type_present_flag) {
SKIP_BITS_OR_RETURN(3); // video_format
READ_BOOL_OR_RETURN(&vui->video_full_range_flag);
READ_BOOL_OR_RETURN(&vui->colour_description_present_flag);
if (vui->colour_description_present_flag) {
// color description syntax elements
READ_BITS_OR_RETURN(8, &vui->colour_primaries);
READ_BITS_OR_RETURN(8, &vui->transfer_characteristics);
READ_BITS_OR_RETURN(8, &vui->matrix_coeffs);
}
}
READ_BOOL_OR_RETURN(&data); // chroma_loc_info_present_flag
if (data) {
READ_UE_OR_RETURN(&data); // chroma_sample_loc_type_top_field
READ_UE_OR_RETURN(&data); // chroma_sample_loc_type_bottom_field
}
// Ignore neutral_chroma_indication_flag, field_seq_flag and
// frame_field_info_present_flag.
SKIP_BITS_OR_RETURN(3);
bool default_display_window_flag;
READ_BOOL_OR_RETURN(&default_display_window_flag);
if (default_display_window_flag) {
READ_UE_OR_RETURN(&vui->def_disp_win_left_offset);
READ_UE_OR_RETURN(&vui->def_disp_win_right_offset);
READ_UE_OR_RETURN(&vui->def_disp_win_top_offset);
READ_UE_OR_RETURN(&vui->def_disp_win_bottom_offset);
}
// Read and ignore timing info.
READ_BOOL_OR_RETURN(&data); // timing_info_present_flag
if (data) {
SKIP_BITS_OR_RETURN(32); // vui_num_units_in_tick
SKIP_BITS_OR_RETURN(32); // vui_time_scale
READ_BOOL_OR_RETURN(&data); // vui_poc_proportional_to_timing_flag
if (data)
READ_UE_OR_RETURN(&data); // vui_num_ticks_poc_diff_one_minus1
res = ParseAndIgnoreHrdParameters(true, sps.sps_max_sub_layers_minus1);
if (res != kOk)
return res;
}
READ_BOOL_OR_RETURN(&vui->bitstream_restriction_flag);
if (vui->bitstream_restriction_flag) {
// Skip tiles_fixed_structure_flag, motion_vectors_over_pic_boundaries_flag
// and restricted_ref_pic_lists_flag.
SKIP_BITS_OR_RETURN(3);
READ_UE_OR_RETURN(&vui->min_spatial_segmentation_idc);
READ_UE_OR_RETURN(&vui->max_bytes_per_pic_denom);
READ_UE_OR_RETURN(&vui->max_bits_per_min_cu_denom);
READ_UE_OR_RETURN(&vui->log2_max_mv_length_horizontal);
READ_UE_OR_RETURN(&vui->log2_max_mv_length_vertical);
}
return kOk;
}
H265Parser::Result H265Parser::ParseAndIgnoreHrdParameters(
bool common_inf_present_flag,
int max_num_sub_layers_minus1) {
Result res = kOk;
int data;
READ_BOOL_OR_RETURN(&data); // present_flag
if (!data)
return res;
bool nal_hrd_parameters_present_flag = false;
bool vcl_hrd_parameters_present_flag = false;
bool sub_pic_hrd_params_present_flag = false;
if (common_inf_present_flag) {
READ_BOOL_OR_RETURN(&nal_hrd_parameters_present_flag);
READ_BOOL_OR_RETURN(&vcl_hrd_parameters_present_flag);
if (nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag) {
READ_BOOL_OR_RETURN(&sub_pic_hrd_params_present_flag);
if (sub_pic_hrd_params_present_flag) {
SKIP_BITS_OR_RETURN(8); // tick_divisor_minus2
SKIP_BITS_OR_RETURN(5); // du_cpb_removal_delay_increment_length_minus1
SKIP_BITS_OR_RETURN(1); // sub_pic_cpb_params_in_pic_timing_sei_flag
SKIP_BITS_OR_RETURN(5); // dpb_output_delay_du_length_minus1
}
SKIP_BITS_OR_RETURN(4); // bit_rate_scale;
SKIP_BITS_OR_RETURN(4); // cpb_size_scale;
if (sub_pic_hrd_params_present_flag)
SKIP_BITS_OR_RETURN(4); // cpb_size_du_scale
SKIP_BITS_OR_RETURN(5); // initial_cpb_removal_delay_length_minus1
SKIP_BITS_OR_RETURN(5); // au_cpb_removal_delay_length_minus1
SKIP_BITS_OR_RETURN(5); // dpb_output_delay_length_minus1
}
}
for (int i = 0; i <= max_num_sub_layers_minus1; ++i) {
bool fixed_pic_rate_flag;
READ_BOOL_OR_RETURN(&fixed_pic_rate_flag); // general
if (!fixed_pic_rate_flag)
READ_BOOL_OR_RETURN(&fixed_pic_rate_flag); // within_cvs
bool low_delay_hrd_flag = false;
if (fixed_pic_rate_flag)
READ_UE_OR_RETURN(&data); // elemental_duration_in_tc_minus1
else
READ_BOOL_OR_RETURN(&low_delay_hrd_flag);
int cpb_cnt = 1;
if (!low_delay_hrd_flag) {
READ_UE_OR_RETURN(&cpb_cnt);
IN_RANGE_OR_RETURN(cpb_cnt, 0, 31);
cpb_cnt += 1; // parsed as minus1
}
if (nal_hrd_parameters_present_flag) {
res = ParseAndIgnoreSubLayerHrdParameters(
cpb_cnt, sub_pic_hrd_params_present_flag);
if (res != kOk)
return res;
}
if (vcl_hrd_parameters_present_flag) {
res = ParseAndIgnoreSubLayerHrdParameters(
cpb_cnt, sub_pic_hrd_params_present_flag);
if (res != kOk)
return res;
}
}
return res;
}
H265Parser::Result H265Parser::ParseAndIgnoreSubLayerHrdParameters(
int cpb_cnt,
bool sub_pic_hrd_params_present_flag) {
int data;
for (int i = 0; i < cpb_cnt; ++i) {
READ_UE_OR_RETURN(&data); // bit_rate_value_minus1[i]
READ_UE_OR_RETURN(&data); // cpb_size_value_minus1[i]
if (sub_pic_hrd_params_present_flag) {
READ_UE_OR_RETURN(&data); // cpb_size_du_value_minus1[i]
READ_UE_OR_RETURN(&data); // bit_rate_du_value_minus1[i]
}
SKIP_BITS_OR_RETURN(1); // cbr_flag[i]
}
return kOk;
}
H265Parser::Result H265Parser::ParseRefPicListsModifications(
const H265SliceHeader& shdr,
H265RefPicListsModifications* rpl_mod) {
READ_BOOL_OR_RETURN(&rpl_mod->ref_pic_list_modification_flag_l0);
if (rpl_mod->ref_pic_list_modification_flag_l0) {
for (int i = 0; i <= shdr.num_ref_idx_l0_active_minus1; ++i) {
READ_BITS_OR_RETURN(base::bits::Log2Ceiling(shdr.num_pic_total_curr),
&rpl_mod->list_entry_l0[i]);
IN_RANGE_OR_RETURN(rpl_mod->list_entry_l0[i], 0,
shdr.num_pic_total_curr - 1);
}
}
if (shdr.IsBSlice()) {
READ_BOOL_OR_RETURN(&rpl_mod->ref_pic_list_modification_flag_l1);
if (rpl_mod->ref_pic_list_modification_flag_l1) {
for (int i = 0; i <= shdr.num_ref_idx_l1_active_minus1; ++i) {
READ_BITS_OR_RETURN(base::bits::Log2Ceiling(shdr.num_pic_total_curr),
&rpl_mod->list_entry_l1[i]);
IN_RANGE_OR_RETURN(rpl_mod->list_entry_l1[i], 0,
shdr.num_pic_total_curr - 1);
}
}
}
return kOk;
}
H265Parser::Result H265Parser::ParsePredWeightTable(
const H265SPS& sps,
const H265SliceHeader& shdr,
H265PredWeightTable* pred_weight_table) {
// 7.4.6.3 Weighted prediction parameters semantics
READ_UE_OR_RETURN(&pred_weight_table->luma_log2_weight_denom);
IN_RANGE_OR_RETURN(pred_weight_table->luma_log2_weight_denom, 0, 7);
if (sps.chroma_array_type) {
READ_SE_OR_RETURN(&pred_weight_table->delta_chroma_log2_weight_denom);
pred_weight_table->chroma_log2_weight_denom =
pred_weight_table->delta_chroma_log2_weight_denom +
pred_weight_table->luma_log2_weight_denom;
IN_RANGE_OR_RETURN(pred_weight_table->chroma_log2_weight_denom, 0, 7);
}
bool luma_weight_flag[kMaxRefIdxActive];
bool chroma_weight_flag[kMaxRefIdxActive];
memset(chroma_weight_flag, 0, sizeof(chroma_weight_flag));
for (int i = 0; i <= shdr.num_ref_idx_l0_active_minus1; ++i) {
READ_BOOL_OR_RETURN(&luma_weight_flag[i]);
}
if (sps.chroma_array_type) {
for (int i = 0; i <= shdr.num_ref_idx_l0_active_minus1; ++i) {
READ_BOOL_OR_RETURN(&chroma_weight_flag[i]);
}
}
int sum_weight_l0_flags = 0;
for (int i = 0; i <= shdr.num_ref_idx_l0_active_minus1; ++i) {
if (luma_weight_flag[i]) {
sum_weight_l0_flags++;
READ_SE_OR_RETURN(&pred_weight_table->delta_luma_weight_l0[i]);
IN_RANGE_OR_RETURN(pred_weight_table->delta_luma_weight_l0[i], -128, 127);
READ_SE_OR_RETURN(&pred_weight_table->luma_offset_l0[i]);
IN_RANGE_OR_RETURN(pred_weight_table->luma_offset_l0[i],
-sps.wp_offset_half_range_y,
sps.wp_offset_half_range_y - 1);
}
if (chroma_weight_flag[i]) {
sum_weight_l0_flags += 2;
for (int j = 0; j < 2; ++j) {
READ_SE_OR_RETURN(&pred_weight_table->delta_chroma_weight_l0[i][j]);
IN_RANGE_OR_RETURN(pred_weight_table->delta_chroma_weight_l0[i][j],
-128, 127);
READ_SE_OR_RETURN(&pred_weight_table->delta_chroma_offset_l0[i][j]);
IN_RANGE_OR_RETURN(pred_weight_table->delta_chroma_offset_l0[i][j],
-4 * sps.wp_offset_half_range_c,
4 * sps.wp_offset_half_range_c - 1);
}
}
}
if (shdr.IsPSlice())
TRUE_OR_RETURN(sum_weight_l0_flags <= 24);
if (shdr.IsBSlice()) {
memset(chroma_weight_flag, 0, sizeof(chroma_weight_flag));
int sum_weight_l1_flags = 0;
for (int i = 0; i <= shdr.num_ref_idx_l1_active_minus1; ++i) {
READ_BOOL_OR_RETURN(&luma_weight_flag[i]);
}
if (sps.chroma_array_type) {
for (int i = 0; i <= shdr.num_ref_idx_l1_active_minus1; ++i) {
READ_BOOL_OR_RETURN(&chroma_weight_flag[i]);
}
}
for (int i = 0; i <= shdr.num_ref_idx_l1_active_minus1; ++i) {
if (luma_weight_flag[i]) {
sum_weight_l1_flags++;
READ_SE_OR_RETURN(&pred_weight_table->delta_luma_weight_l1[i]);
IN_RANGE_OR_RETURN(pred_weight_table->delta_luma_weight_l1[i], -128,
127);
READ_SE_OR_RETURN(&pred_weight_table->luma_offset_l1[i]);
IN_RANGE_OR_RETURN(pred_weight_table->luma_offset_l1[i],
-sps.wp_offset_half_range_y,
sps.wp_offset_half_range_y - 1);
}
if (chroma_weight_flag[i]) {
sum_weight_l1_flags += 2;
for (int j = 0; j < 2; ++j) {
READ_SE_OR_RETURN(&pred_weight_table->delta_chroma_weight_l1[i][j]);
IN_RANGE_OR_RETURN(pred_weight_table->delta_chroma_weight_l1[i][j],
-128, 127);
READ_SE_OR_RETURN(&pred_weight_table->delta_chroma_offset_l1[i][j]);
IN_RANGE_OR_RETURN(pred_weight_table->delta_chroma_offset_l1[i][j],
-4 * sps.wp_offset_half_range_c,
4 * sps.wp_offset_half_range_c - 1);
}
}
}
TRUE_OR_RETURN(sum_weight_l0_flags + sum_weight_l1_flags <= 24);
}
return kOk;
}
H265Parser::Result H265Parser::ParseSEI(H265SEI* sei) {
int byte;
int num_parsed_sei_msg = 0;
// According to spec 7.3.2.4, we should loop parsing SEI NALU
// as long as `more_rbsp_data` condition is true, which means
// if the NALU's RBSP data is large enough and `more_rbsp_data`
// condition keeps true all the time, we are very likely have to
// loop the parsing millions of times.
//
// The spec doesn't provide any pattern to let us validate the
// the parsed SEI messages, so we have to set a limit here.
constexpr int kMaxParsedSEIMessages = 64;
do {
H265SEIMessage sei_msg;
sei_msg.type = 0;
READ_BITS_OR_RETURN(8, &byte);
while (byte == 0xff) {
sei_msg.type += 255;
READ_BITS_OR_RETURN(8, &byte);
}
sei_msg.type += byte;
sei_msg.payload_size = 0;
READ_BITS_OR_RETURN(8, &byte);
while (byte == 0xff) {
sei_msg.payload_size += 255;
READ_BITS_OR_RETURN(8, &byte);
}
sei_msg.payload_size += byte;
int num_bits_remain = sei_msg.payload_size * 8;
DVLOG(4) << "Found SEI message type: " << sei_msg.type
<< " payload size: " << sei_msg.payload_size;
switch (sei_msg.type) {
case H265SEIMessage::kSEIAlphaChannelInfo:
READ_BOOL_AND_MINUS_BITS_READ_OR_RETURN(
&sei_msg.alpha_channel_info.alpha_channel_cancel_flag,
&num_bits_remain);
if (!sei_msg.alpha_channel_info.alpha_channel_cancel_flag) {
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(
3, &sei_msg.alpha_channel_info.alpha_channel_use_idc,
&num_bits_remain);
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(
3, &sei_msg.alpha_channel_info.alpha_channel_bit_depth_minus8,
&num_bits_remain);
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(
sei_msg.alpha_channel_info.alpha_channel_bit_depth_minus8 + 9,
&sei_msg.alpha_channel_info.alpha_transparent_value,
&num_bits_remain);
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(
sei_msg.alpha_channel_info.alpha_channel_bit_depth_minus8 + 9,
&sei_msg.alpha_channel_info.alpha_opaque_value, &num_bits_remain);
READ_BOOL_AND_MINUS_BITS_READ_OR_RETURN(
&sei_msg.alpha_channel_info.alpha_channel_incr_flag,
&num_bits_remain);
READ_BOOL_AND_MINUS_BITS_READ_OR_RETURN(
&sei_msg.alpha_channel_info.alpha_channel_clip_flag,
&num_bits_remain);
if (sei_msg.alpha_channel_info.alpha_channel_clip_flag) {
READ_BOOL_AND_MINUS_BITS_READ_OR_RETURN(
&sei_msg.alpha_channel_info.alpha_channel_clip_type_flag,
&num_bits_remain);
}
}
break;
case H265SEIMessage::kSEIContentLightLevelInfo:
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(
16, &sei_msg.content_light_level_info.max_content_light_level,
&num_bits_remain);
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(
16,
&sei_msg.content_light_level_info.max_picture_average_light_level,
&num_bits_remain);
break;
case H265SEIMessage::kSEIMasteringDisplayInfo:
for (auto& primary : sei_msg.mastering_display_info.display_primaries) {
for (auto& component : primary) {
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(16, &component,
&num_bits_remain);
}
}
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(
16, &sei_msg.mastering_display_info.white_points[0],
&num_bits_remain);
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(
16, &sei_msg.mastering_display_info.white_points[1],
&num_bits_remain);
uint32_t luminace_high_31bits, luminance_low_1bit;
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(31, &luminace_high_31bits,
&num_bits_remain);
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(1, &luminance_low_1bit,
&num_bits_remain);
sei_msg.mastering_display_info.max_luminance =
(luminace_high_31bits << 1) + (luminance_low_1bit & 0x1);
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(31, &luminace_high_31bits,
&num_bits_remain);
READ_BITS_AND_MINUS_BITS_READ_OR_RETURN(1, &luminance_low_1bit,
&num_bits_remain);
sei_msg.mastering_display_info.min_luminance =
(luminace_high_31bits << 1) + (luminance_low_1bit & 0x1);
break;
default:
DVLOG(4) << "Unsupported SEI message";
break;
}
TRUE_OR_RETURN(num_bits_remain >= 0);
// 7.2 More data in payload or unsupported SEI, skip bits.
if (num_bits_remain > 0)
SKIP_BITS_OR_RETURN(num_bits_remain);
// Only add parsed SEI messages.
if (num_bits_remain < sei_msg.payload_size * 8)
sei->msgs.push_back(sei_msg);
// In case the loop endless.
if (++num_parsed_sei_msg > kMaxParsedSEIMessages)
return kInvalidStream;
} while (br_.HasMoreRBSPData());
return kOk;
}
} // namespace media