/* * Copyright 2022 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/graphite/render/AnalyticRRectRenderStep.h" #include "src/base/SkVx.h" #include "src/core/SkRRectPriv.h" #include "src/gpu/graphite/DrawParams.h" #include "src/gpu/graphite/DrawWriter.h" #include "src/gpu/graphite/render/CommonDepthStencilSettings.h" // This RenderStep is flexible and can draw filled rectangles, filled quadrilaterals with per-edge // AA, filled rounded rectangles with arbitrary corner radii, stroked rectangles with any join, // stroked lines with any cap, stroked rounded rectangles with circular corners (each corner can be // different or square), hairline rectangles, hairline lines, and hairline rounded rectangles with // arbitrary corners. // // We combine all of these together to maximize batching across simple geometric draws and reduce // the number pipeline specializations. Additionally, these primitives are the most common // operations and help us avoid triggering MSAA. // // Each of these "primitives" is represented by a single instance. The instance attributes are // flexible enough to describe any of the above shapes without relying on uniforms to define its // operation. The attributes encode shape as follows: // // float4 xRadiiOrFlags - if any components is > 0, the instance represents a filled round rect // with elliptical corners and these values specify the X radii in top-left CW order. // Otherwise, if .x < -1, the instance represents a stroked or hairline [round] rect or line, // where .y differentiates hairline vs. stroke. If .y is negative, then it is a hairline [round] // rect and xRadiiOrFlags stores (-2 - X radii); if .y is zero, it is a regular stroked [round] // rect; if .y is positive, then it is a stroked *or* hairline line. For .y >= 0, .z holds the // stroke radius and .w stores the join limit (matching StrokeStyle's conventions). // Lastly, if -1 <= .x <= 0, it's a filled quadrilateral with per-edge AA defined by each by the // component: aa != 0. // float4 radiiOrQuadXs - if in filled round rect or hairline [round] rect mode, these values // provide the Y radii in top-left CW order. If in stroked [round] rect mode, these values // provide the circular corner radii (same order). Otherwise, when in per-edge quad mode, these // values provide the X coordinates of the quadrilateral (same order). // float4 ltrbOrQuadYs - if in filled round rect mode or stroked [round] rect mode, these values // define the LTRB edge coordinates of the rectangle surrounding the round rect (or the // rect itself when the radii are 0s). In stroked line mode, LTRB is treated as (x0,y0) and // (x1,y1) that defines the line. Otherwise, in per-edge quad mode, these values provide // the Y coordinates of the quadrilateral. // // From the other direction, shapes produce instance values like: // - filled rect: [-1 -1 -1 -1] [L R R L] [T T B B] // - stroked rect: [-2 0 stroke join] [0 0 0 0] [L T R B] // - hairline rect: [-2 -2 -2 -2] [0 0 0 0] [L T R B] // - filled rrect: [xRadii(tl,tr,br,bl)] [yRadii(tl,tr,br,bl)] [L T R B] // - stroked rrect: [-2 0 stroke join] [radii(tl,tr,br,bl)] [L T R B] // - hairline rrect: [-2-xRadii(tl,tr,br,bl)] [radii(tl,tr,br,bl)] [L T R B] // - filled line: N/A, discarded higher in the stack // - stroked line: [-2 1 stroke cap] [0 0 0 0] [x0,y0,x1,y1] // - hairline line: [-2 1 0 1] [0 0 0 0] [x0,y0,x1,y1] // - per-edge quad: [aa(t,r,b,l) ? -1 : 0] [xs(tl,tr,br,bl)] [ys(tl,tr,br,bl)] // // This encoding relies on the fact that a valid SkRRect with all x radii equal to 0 must have // y radii equal to 0 (so it's a rectangle and we can treat it as a quadrilateral with // all edges AA'ed). This avoids other encodings' inability to represent a quad with all edges // anti-aliased (e.g. checking for negatives in xRadiiOrFlags to turn on per-edge mode). // // From this encoding, data can be unpacked for each corner, which are equivalent under // rotational symmetry. A corner can have an outer curve, be mitered, or be beveled. It can // have an inner curve, an inner miter, or fill the interior. Per-edge quads are always mitered // and fill the interior, but the vertices are placed such that the edge coverage ramps can // collapse to 0 area on non-AA edges. // // The vertices that describe each corner are placed so that edges, miters, and bevels calculate // coverage by interpolating a varying and then clamping in the fragment shader. Triangles that // cover the inner and outer curves calculate distance to the curve within the fragment shader. // // See https://docs.google.com/presentation/d/1MCPstNsSlDBhR8CrsJo0r-cZNbu-sEJEvU9W94GOJoY/edit?usp=sharing // for diagrams and explanation of how the geometry is defined. // // AnalyticRRectRenderStep uses the common technique of approximating distance to the level set by // one expansion of the Taylor's series for the level set's equation. Given a level set function // C(x,y), this amounts to calculating C(px,py)/|∇C(px,py)|. For the straight edges the level set // is linear and calculated in the vertex shader and then interpolated exactly over the rectangle. // This provides distances to all four exterior edges within the fragment shader and allows it to // reconstruct a relative position per elliptical corner. Unfortunately this requires the fragment // shader to calculate the length of the gradient for straight edges instead of interpolating // exact device-space distance. // // All four corner radii are potentially evaluated by the fragment shader although each corner's // coverage is only calculated when the pixel is within the bounding box of its quadrant. For fills // and simple strokes it's theoretically valid to have each pixel calculate a single corner's // coverage that was controlled via the vertex shader. However, testing all four corners is // necessary in order to correctly handle self-intersecting stroke interiors. Similarly, all four // edges must be evaluated in order to handle extremely thin shapes; whereas often you could get // away with tracking a single edge distance per pixel. // // Analytic derivatives are used so that a single pipeline can be used regardless of HW derivative // support or for geometry that would prove difficult for forward differencing. The device-space // gradient for ellipses is calculated per-pixel by transforming a per-pixel local gradient vector // with the Jacobian of the inverse local-to-device transform: // // (px,py) is the projected point of (u,v) transformed by a 3x3 matrix, M: // [x(u,v) / w(u,v)] [x] [m00 m01 m02] [u] // (px,py) = [y(u,v) / w(u,v)] where [y] = [m10 m11 m12]X[v] = M*(u,v,1) // [w] [m20 m21 m22] [1] // // C(px,py) can be defined in terms of a local Cl(u,v) as C(px,py) = Cl(p^-1(px,py)), where p^-1 = // // [x'(px,py) / w'(px,py)] [x'] [m00' m01' * m02'] [px] // (u,v) = [y'(px,py) / w'(px,py)] where [y'] = [m10' m11' * m12']X[py] = M^-1*(px,py,0,1) // [w'] [m20' m21' * m22'] [ 1] // // Note that if the 3x3 M was arrived by dropping the 3rd row and column from a 4x4 since we assume // a local 3rd coordinate of 0, M^-1 is not equal to the 4x4 inverse with dropped rows and columns. // // Using the chain rule, then ∇C(px,py) // = ∇Cl(u,v)X[1/w'(px,py) 0 -x'(px,py)/w'(px,py)^2] [m00' m01'] // [ 0 1/w'(px,py) -y'(px,py)/w'(px,py)^2]X[m10' m11'] // [m20' m21'] // // = 1/w'(px,py)*∇Cl(u,v)X[1 0 -x'(px,py)/w'(px,py)] [m00' m01'] // [0 1 -y'(px,py)/w'(px,py)]X[m10' m11'] // [m20' m21'] // // = w(u,v)*∇Cl(u,v)X[1 0 0 -u] [m00' m01'] // [0 1 0 -v]X[m10' m11'] // [m20' m21'] // // = w(u,v)*∇Cl(u,v)X[m00'-m20'u m01'-m21'u] // [m10'-m20'v m11'-m21'v] // // The vertex shader calculates the rightmost 2x2 matrix and interpolates it across the shape since // each component is linear in (u,v). ∇Cl(u,v) is evaluated per pixel in the fragment shader and // depends on which corner and edge being evaluated. w(u,v) is the device-space W coordinate, so // its reciprocal is provided in sk_FragCoord.w. namespace skgpu::graphite { AAFlags; static skvx::float4 load_x_radii(const SkRRect& rrect) { … } static skvx::float4 load_y_radii(const SkRRect& rrect) { … } static bool opposite_insets_intersect(const SkRRect& rrect, float strokeRadius, float aaRadius) { … } static bool opposite_insets_intersect(const Rect& rect, float strokeRadius, float aaRadius) { … } static bool opposite_insets_intersect(const Geometry& geometry, float strokeRadius, float aaRadius) { … } static bool is_clockwise(const EdgeAAQuad& quad) { … } static skvx::float2 quad_center(const EdgeAAQuad& quad) { … } // Represents the per-vertex attributes used in each instance. struct Vertex { … }; // Allowed values for the center weight instance value (selected at record time based on style // and transform), and are defined such that when (insance-weight > vertex-weight) is true, the // vertex should be snapped to the center instead of its regular calculation. static constexpr float kSolidInterior = …; static constexpr float kStrokeInterior = …; static constexpr float kFilledStrokeInterior = …; // Special value for local AA radius to signal when the self-intersections of a stroke interior // need extra calculations in the vertex shader. static constexpr float kComplexAAInsets = …; static constexpr int kCornerVertexCount = …; // sk_VertexID is divided by this in SkSL static constexpr int kVertexCount = …; static constexpr int kIndexCount = …; static void write_index_buffer(VertexWriter writer) { … } static void write_vertex_buffer(VertexWriter writer) { … } AnalyticRRectRenderStep::AnalyticRRectRenderStep(StaticBufferManager* bufferManager) : … { … } AnalyticRRectRenderStep::~AnalyticRRectRenderStep() { … } std::string AnalyticRRectRenderStep::vertexSkSL() const { … } const char* AnalyticRRectRenderStep::fragmentCoverageSkSL() const { … } void AnalyticRRectRenderStep::writeVertices(DrawWriter* writer, const DrawParams& params, skvx::ushort2 ssboIndices) const { … } void AnalyticRRectRenderStep::writeUniformsAndTextures(const DrawParams&, PipelineDataGatherer*) const { … } } // namespace skgpu::graphite