// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <assert.h>
#include <math.h>
#include <ppapi/c/ppb_input_event.h>
#include <ppapi/cpp/input_event.h>
#include <ppapi/cpp/var.h>
#include <ppapi/cpp/var_array.h>
#include <ppapi/cpp/var_array_buffer.h>
#include <ppapi/cpp/var_dictionary.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <algorithm>
#include <string>
#include "common/fps.h"
#include "ppapi_simple/ps.h"
#include "ppapi_simple/ps_context_2d.h"
#include "ppapi_simple/ps_event.h"
#include "ppapi_simple/ps_interface.h"
#include "sdk_util/thread_pool.h"
using namespace sdk_util; // For sdk_util::ThreadPool
// Global properties used to setup Voronoi demo.
namespace {
const int kMinRectSize = 4;
const int kStartRecurseSize = 32; // must be power-of-two
const float kHugeZ = 1.0e38f;
const float kPI = M_PI;
const float kTwoPI = kPI * 2.0f;
const unsigned int kRandomStartSeed = 0xC0DE533D;
const int kMaxPointCount = 1024;
const int kStartPointCount = 48;
const int kDefaultNumRegions = 256;
unsigned int g_rand_state = kRandomStartSeed;
// random number helper
inline unsigned char rand255() {
return static_cast<unsigned char>(rand_r(&g_rand_state) & 255);
}
// random number helper
inline float frand() {
return (static_cast<float>(rand_r(&g_rand_state)) /
static_cast<float>(RAND_MAX));
}
// reset random seed
inline void rand_reset(unsigned int seed) {
g_rand_state = seed;
}
inline uint32_t next_pow2(uint32_t x) {
// Via Hacker's Delight, section 3.2 "Rounding Up/Down to the Next Power of 2"
--x;
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x + 1;
}
// BGRA helper function, for constructing a pixel for a BGRA buffer.
inline uint32_t MakeBGRA(uint32_t b, uint32_t g, uint32_t r, uint32_t a) {
return (((a) << 24) | ((r) << 16) | ((g) << 8) | (b));
}
} // namespace
// Vec2, simple 2D vector
struct Vec2 {
float x, y;
Vec2() {}
Vec2(float px, float py) {
x = px;
y = py;
}
void Set(float px, float py) {
x = px;
y = py;
}
};
// The main object that runs Voronoi simulation.
class Voronoi {
public:
Voronoi();
virtual ~Voronoi();
// Runs a tick of the simulations, update 2D output.
void Update();
// Handle event from user, or message from JS.
void HandleEvent(PSEvent* ps_event);
private:
// Methods prefixed with 'w' are run on worker threads.
uint32_t* wGetAddr(int x, int y);
int wCell(float x, float y);
inline void wFillSpan(uint32_t *pixels, uint32_t color, int width);
void wRenderTile(int x, int y, int w, int h);
void wProcessTile(int x, int y, int w, int h);
void wSubdivide(int x, int y, int w, int h);
void wMakeRect(int region, int *x, int *y, int *w, int *h);
bool wTestRect(int *m, int x, int y, int w, int h);
void wFillRect(int x, int y, int w, int h, uint32_t color);
void wRenderRect(int x0, int y0, int x1, int y1);
void wRenderRegion(int region);
static void wRenderRegionEntry(int region, void *thiz);
// These methods are only called by the main thread.
void Reset();
void UpdateSim();
void RenderDot(float x, float y, uint32_t color1, uint32_t color2);
void SuperimposePositions();
void Render();
void Draw();
// Helper to post small update messages to JS.
void PostUpdateMessage(const char* message_name, double value);
PSContext2D_t* ps_context_;
Vec2 positions_[kMaxPointCount];
Vec2 screen_positions_[kMaxPointCount];
Vec2 velocities_[kMaxPointCount];
uint32_t colors_[kMaxPointCount];
float ang_;
const int num_regions_;
int num_threads_;
int point_count_;
bool draw_points_;
bool draw_interiors_;
ThreadPool* workers_;
FpsState fps_state_;
};
void Voronoi::Reset() {
rand_reset(kRandomStartSeed);
ang_ = 0.0f;
for (int i = 0; i < kMaxPointCount; i++) {
// random initial start position
const float x = frand();
const float y = frand();
positions_[i].Set(x, y);
// random directional velocity ( -1..1, -1..1 )
const float speed = 0.0005f;
const float u = (frand() * 2.0f - 1.0f) * speed;
const float v = (frand() * 2.0f - 1.0f) * speed;
velocities_[i].Set(u, v);
// 'unique' color (well... unique enough for our purposes)
colors_[i] = MakeBGRA(rand255(), rand255(), rand255(), 255);
}
}
Voronoi::Voronoi() : num_regions_(kDefaultNumRegions), num_threads_(0),
point_count_(kStartPointCount), draw_points_(true), draw_interiors_(true) {
Reset();
// By default, render from the dispatch thread.
workers_ = new ThreadPool(num_threads_);
PSEventSetFilter(PSE_ALL);
ps_context_ = PSContext2DAllocate(PP_IMAGEDATAFORMAT_BGRA_PREMUL);
FpsInit(&fps_state_);
}
Voronoi::~Voronoi() {
delete workers_;
PSContext2DFree(ps_context_);
}
inline uint32_t* Voronoi::wGetAddr(int x, int y) {
return ps_context_->data + x + y * ps_context_->stride / sizeof(uint32_t);
}
// This is the core of the Voronoi calculation. At a given point on the
// screen, iterate through all voronoi positions and render them as 3D cones.
// We're looking for the voronoi cell that generates the closest z value.
// (not really cones - since it is all relative, we avoid doing the
// expensive sqrt and test against z*z instead)
// If multithreading, this function is only called by the worker threads.
int Voronoi::wCell(float x, float y) {
int closest_cell = 0;
float zz = kHugeZ;
Vec2* pos = screen_positions_;
for (int i = 0; i < point_count_; ++i) {
// measured 5.18 cycles per iteration on a core2
float dx = x - pos[i].x;
float dy = y - pos[i].y;
float dd = (dx * dx + dy * dy);
if (dd < zz) {
zz = dd;
closest_cell = i;
}
}
return closest_cell;
}
// Given a region r, derive a non-overlapping rectangle for a thread to
// work on.
// If multithreading, this function is only called by the worker threads.
void Voronoi::wMakeRect(int r, int* x, int* y, int* w, int* h) {
const int parts = 16;
assert(parts * parts == num_regions_);
// Round up to the nearest power of two so we can divide by parts cleanly. We
// could round up to the nearest 16 pixels, but it runs much faster when
// subdividing power-of-two squares.
//
// Many of these squares are outside of the canvas, but they will be
// trivially culled by wRenderRect.
*w = static_cast<int>(next_pow2(ps_context_->width)) / parts;
*h = static_cast<int>(next_pow2(ps_context_->height)) / parts;
*x = *w * (r % parts);
*y = *h * ((r / parts) % parts);
}
// Test 4 corners of a rectangle to see if they all belong to the same
// voronoi cell. Each test is expensive so bail asap. Returns true
// if all 4 corners match.
// If multithreading, this function is only called by the worker threads.
bool Voronoi::wTestRect(int* m, int x, int y, int w, int h) {
// each test is expensive, so exit ASAP
const int m0 = wCell(x, y);
const int m1 = wCell(x + w - 1, y);
if (m0 != m1) return false;
const int m2 = wCell(x, y + h - 1);
if (m0 != m2) return false;
const int m3 = wCell(x + w - 1, y + h - 1);
if (m0 != m3) return false;
// all 4 corners belong to the same cell
*m = m0;
return true;
}
// Quickly fill a span of pixels with a solid color.
// If multithreading, this function is only called by the worker threads.
inline void Voronoi::wFillSpan(uint32_t* pixels, uint32_t color, int width) {
if (!draw_interiors_) {
const uint32_t gray = MakeBGRA(128, 128, 128, 255);
color = gray;
}
for (int i = 0; i < width; ++i)
*pixels++ = color;
}
// Quickly fill a rectangle with a solid color.
// If multithreading, this function is only called by the worker threads.
void Voronoi::wFillRect(int x, int y, int w, int h, uint32_t color) {
const uint32_t stride_in_pixels = ps_context_->stride / sizeof(uint32_t);
uint32_t* pixels = wGetAddr(x, y);
for (int j = 0; j < h; j++) {
wFillSpan(pixels, color, w);
pixels += stride_in_pixels;
}
}
// When recursive subdivision reaches a certain minimum without finding a
// rectangle that has four matching corners belonging to the same voronoi
// cell, this function will break the retangular 'tile' into smaller scanlines
// and look for opportunities to quick fill at the scanline level. If the
// scanline can't be quick filled, it will slow down even further and compute
// voronoi membership per pixel.
void Voronoi::wRenderTile(int x, int y, int w, int h) {
// rip through a tile
const uint32_t stride_in_pixels = ps_context_->stride / sizeof(uint32_t);
uint32_t* pixels = wGetAddr(x, y);
for (int j = 0; j < h; j++) {
// get start and end cell values
int ms = wCell(x + 0, y + j);
int me = wCell(x + w - 1, y + j);
// if the end points are the same, quick fill the span
if (ms == me) {
wFillSpan(pixels, colors_[ms], w);
} else {
// else compute each pixel in the span... this is the slow part!
uint32_t* p = pixels;
*p++ = colors_[ms];
for (int i = 1; i < (w - 1); i++) {
int m = wCell(x + i, y + j);
*p++ = colors_[m];
}
*p++ = colors_[me];
}
pixels += stride_in_pixels;
}
}
// Take a rectangular region and do one of -
// If all four corners below to the same voronoi cell, stop recursion and
// quick fill the rectangle.
// If the minimum rectangle size has been reached, break out of recursion
// and process the rectangle. This small rectangle is called a tile.
// Otherwise, keep recursively subdividing the rectangle into 4 equally
// sized smaller rectangles.
// If multithreading, this function is only called by the worker threads.
void Voronoi::wSubdivide(int x, int y, int w, int h) {
int m;
// if all 4 corners are equal, quick fill interior
if (wTestRect(&m, x, y, w, h)) {
wFillRect(x, y, w, h, colors_[m]);
} else {
// did we reach the minimum rectangle size?
if ((w <= kMinRectSize) || (h <= kMinRectSize)) {
wRenderTile(x, y, w, h);
} else {
// else recurse into smaller rectangles
const int half_w = w / 2;
const int half_h = h / 2;
wSubdivide(x, y, half_w, half_h);
wSubdivide(x + half_w, y, w - half_w, half_h);
wSubdivide(x, y + half_h, half_w, h - half_h);
wSubdivide(x + half_w, y + half_h, w - half_w, h - half_h);
}
}
}
// This function cuts up the rectangle into squares (preferably power-of-two).
// If multithreading, this function is only called by the worker threads.
void Voronoi::wRenderRect(int x, int y, int w, int h) {
for (int iy = y; iy < (y + h); iy += kStartRecurseSize) {
for (int ix = x; ix < (x + w); ix += kStartRecurseSize) {
int iw = kStartRecurseSize;
int ih = kStartRecurseSize;
// Clamp width + height.
if (ix + iw > ps_context_->width)
iw = ps_context_->width - ix;
if (iy + ih > ps_context_->height)
ih = ps_context_->height - iy;
if (iw <= 0 || ih <= 0)
continue;
wSubdivide(ix, iy, iw, ih);
}
}
}
// If multithreading, this function is only called by the worker threads.
void Voronoi::wRenderRegion(int region) {
// convert region # into x0, y0, x1, y1 rectangle
int x, y, w, h;
wMakeRect(region, &x, &y, &w, &h);
// render this rectangle
wRenderRect(x, y, w, h);
}
// Entry point for worker thread. Can't pass a member function around, so we
// have to do this little round-about.
void Voronoi::wRenderRegionEntry(int region, void* thiz) {
static_cast<Voronoi*>(thiz)->wRenderRegion(region);
}
// Function Voronoi::UpdateSim()
// Run a simple sim to move the voronoi positions. This update loop
// is run once per frame. Called from the main thread only, and only
// when the worker threads are idle.
void Voronoi::UpdateSim() {
ang_ += 0.002f;
if (ang_ > kTwoPI) {
ang_ = ang_ - kTwoPI;
}
float z = cosf(ang_) * 3.0f;
// push the points around on the screen for animation
for (int j = 0; j < kMaxPointCount; j++) {
positions_[j].x += (velocities_[j].x) * z;
positions_[j].y += (velocities_[j].y) * z;
screen_positions_[j].x = positions_[j].x * ps_context_->width;
screen_positions_[j].y = positions_[j].y * ps_context_->height;
}
}
// Renders a small diamond shaped dot at x, y clipped against the window
void Voronoi::RenderDot(float x, float y, uint32_t color1, uint32_t color2) {
const int ix = static_cast<int>(x);
const int iy = static_cast<int>(y);
const uint32_t stride_in_pixels = ps_context_->stride / sizeof(uint32_t);
// clip it against window
if (ix < 1) return;
if (ix >= (ps_context_->width - 1)) return;
if (iy < 1) return;
if (iy >= (ps_context_->height - 1)) return;
uint32_t* pixel = wGetAddr(ix, iy);
// render dot as a small diamond
*pixel = color1;
*(pixel - 1) = color2;
*(pixel + 1) = color2;
*(pixel - stride_in_pixels) = color2;
*(pixel + stride_in_pixels) = color2;
}
// Superimposes dots on the positions.
void Voronoi::SuperimposePositions() {
const uint32_t white = MakeBGRA(255, 255, 255, 255);
const uint32_t gray = MakeBGRA(192, 192, 192, 255);
for (int i = 0; i < point_count_; i++) {
RenderDot(
screen_positions_[i].x, screen_positions_[i].y, white, gray);
}
}
// Renders the Voronoi diagram, dispatching the work to multiple threads.
void Voronoi::Render() {
workers_->Dispatch(num_regions_, wRenderRegionEntry, this);
if (draw_points_)
SuperimposePositions();
}
// Handle input events from the user and messages from JS.
void Voronoi::HandleEvent(PSEvent* ps_event) {
// Give the 2D context a chance to process the event.
if (0 != PSContext2DHandleEvent(ps_context_, ps_event))
return;
if (ps_event->type == PSE_INSTANCE_HANDLEINPUT) {
// Convert Pepper Simple event to a PPAPI C++ event
pp::InputEvent event(ps_event->as_resource);
switch (event.GetType()) {
case PP_INPUTEVENT_TYPE_TOUCHSTART:
case PP_INPUTEVENT_TYPE_TOUCHMOVE: {
pp::TouchInputEvent touches = pp::TouchInputEvent(event);
uint32_t count = touches.GetTouchCount(PP_TOUCHLIST_TYPE_TOUCHES);
// Touch points 0..n directly set position of points 0..n in
// Voronoi diagram.
for (uint32_t i = 0; i < count; i++) {
pp::TouchPoint touch =
touches.GetTouchByIndex(PP_TOUCHLIST_TYPE_TOUCHES, i);
pp::FloatPoint point = touch.position();
positions_[i].Set(point.x() / ps_context_->width,
point.y() / ps_context_->height);
}
break;
}
default:
break;
}
} else if (ps_event->type == PSE_INSTANCE_HANDLEMESSAGE) {
// Convert Pepper Simple message to PPAPI C++ var
pp::Var var(ps_event->as_var);
if (var.is_dictionary()) {
pp::VarDictionary dictionary(var);
std::string message = dictionary.Get("message").AsString();
if (message == "draw_points")
draw_points_ = dictionary.Get("value").AsBool();
else if (message == "draw_interiors")
draw_interiors_ = dictionary.Get("value").AsBool();
else if (message == "set_points") {
int num_points = dictionary.Get("value").AsInt();
point_count_ = std::min(kMaxPointCount, std::max(0, num_points));
} else if (message == "set_threads") {
int thread_count = dictionary.Get("value").AsInt();
delete workers_;
workers_ = new ThreadPool(thread_count);
}
}
}
}
// PostUpdateMessage() helper function for sendimg small messages to JS.
void Voronoi::PostUpdateMessage(const char* message_name, double value) {
pp::VarDictionary message;
message.Set("message", message_name);
message.Set("value", value);
PSInterfaceMessaging()->PostMessage(PSGetInstanceId(), message.pp_var());
}
void Voronoi::Update() {
PSContext2DGetBuffer(ps_context_);
if (NULL == ps_context_->data)
return;
UpdateSim();
Render();
PSContext2DSwapBuffer(ps_context_);
double fps;
if (FpsStep(&fps_state_, &fps))
PostUpdateMessage("fps", fps);
}
// Starting point for the module.
int main(int argc, char* argv[]) {
Voronoi voronoi;
while (true) {
PSEvent* ps_event;
// Consume all available events.
while ((ps_event = PSEventTryAcquire()) != NULL) {
voronoi.HandleEvent(ps_event);
PSEventRelease(ps_event);
}
// Do simulation, render and present.
voronoi.Update();
}
return 0;
}