// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <iterator>
#include <map>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "nacl_io/kernel_intercept.h"
#include "nacl_io/kernel_proxy.h"
#include "nacl_io/ossocket.h"
#include "nacl_io/ostypes.h"
#ifdef PROVIDES_SOCKET_API
using namespace nacl_io;
using namespace sdk_util;
namespace {
class SocketTest : public ::testing::Test {
public:
SocketTest() {}
void SetUp() {
ASSERT_EQ(0, ki_push_state_for_testing());
ASSERT_EQ(0, ki_init(&kp_));
}
void TearDown() {
ki_uninit();
}
protected:
KernelProxy kp_;
};
} // namespace
TEST_F(SocketTest, Accept) {
struct sockaddr addr = {};
socklen_t len = 0;
// accept() should allow NULL args for addr and len
// https://code.google.com/p/chromium/issues/detail?id=442164
// EXPECT_LT(ki_accept(123, NULL, &len), 0);
// EXPECT_EQ(errno, EFAULT);
// EXPECT_LT(ki_accept(123, &addr, NULL), 0);
// EXPECT_EQ(errno, EFAULT);
// EXPECT_LT(ki_accept(123, NULL, NULL), 0);
// EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_accept(-1, &addr, &len), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_accept(0, &addr, &len), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Bind) {
const struct sockaddr const_addr = {};
socklen_t len = 0;
EXPECT_LT(ki_bind(123, NULL, len), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_bind(-1, &const_addr, len), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_bind(0, &const_addr, len), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Connect) {
const struct sockaddr const_addr = {};
socklen_t len = 0;
EXPECT_LT(ki_connect(123, NULL, len), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_connect(-1, &const_addr, len), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_connect(0, &const_addr, len), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Getpeername) {
struct sockaddr addr = {};
socklen_t len = 0;
EXPECT_LT(ki_getpeername(123, NULL, &len), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_getpeername(123, &addr, NULL), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_getpeername(123, NULL, NULL), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_getpeername(-1, &addr, &len), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_getpeername(0, &addr, &len), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Getsockname) {
struct sockaddr addr = {};
socklen_t len = 0;
EXPECT_LT(ki_getsockname(123, NULL, &len), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_getsockname(123, &addr, NULL), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_getsockname(123, NULL, NULL), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_getsockname(-1, &addr, &len), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_getsockname(0, &addr, &len), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Getsockopt) {
socklen_t len = 10;
char optval[len];
EXPECT_LT(ki_getsockopt(123, SOL_SOCKET, SO_ACCEPTCONN, optval, NULL), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_getsockopt(123, SOL_SOCKET, SO_ACCEPTCONN, NULL, &len), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_getsockopt(123, SOL_SOCKET, SO_ACCEPTCONN, NULL, NULL), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_getsockopt(-1, SOL_SOCKET, SO_ACCEPTCONN, optval, &len), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_getsockopt(0, SOL_SOCKET, SO_ACCEPTCONN, optval, &len), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Listen) {
EXPECT_LT(ki_listen(-1, 123), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_listen(0, 123), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Recv) {
size_t len = 10;
char buf[len];
EXPECT_LT(ki_recv(123, NULL, len, 0), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_recv(-1, buf, len, 0), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_recv(0, buf, len, 0), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Recvfrom) {
size_t len = 10;
char buf[len];
struct sockaddr addr = {};
socklen_t addrlen = 4;
EXPECT_LT(ki_recvfrom(123, NULL, len, 0, &addr, &addrlen), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_recvfrom(123, buf, len, 0, &addr, NULL), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_recvfrom(-1, buf, len, 0, &addr, &addrlen), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_recvfrom(0, buf, len, 0, &addr, &addrlen), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Recvmsg) {
struct msghdr msg = {};
EXPECT_LT(ki_recvmsg(123, NULL, 0), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_recvmsg(-1, &msg, 0), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_recvmsg(0, &msg, 0), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Send) {
size_t len = 10;
char buf[len];
EXPECT_LT(ki_send(123, NULL, len, 0), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_send(-1, buf, len, 0), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_send(0, buf, len, 0), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Sendto) {
size_t len = 10;
char buf[len];
struct sockaddr addr = {};
socklen_t addrlen = 4;
EXPECT_LT(ki_sendto(123, NULL, len, 0, &addr, addrlen), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_sendto(-1, buf, len, 0, &addr, addrlen), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_sendto(0, buf, len, 0, &addr, addrlen), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Sendmsg) {
struct msghdr msg = {};
EXPECT_LT(ki_sendmsg(123, NULL, 0), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_sendmsg(-1, &msg, 0), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_sendmsg(0, &msg, 0), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Setsockopt) {
socklen_t len = 10;
char optval[len];
// Passing a bad address as optval should generate EFAULT
EXPECT_EQ(-1, ki_setsockopt(123, SOL_SOCKET, SO_ACCEPTCONN, NULL, len));
EXPECT_EQ(errno, EFAULT);
// Passing a bad socket descriptor should generate EBADF
EXPECT_EQ(-1, ki_setsockopt(-1, SOL_SOCKET, SO_ACCEPTCONN, optval, len));
EXPECT_EQ(errno, EBADF);
// Passing an FD that is valid but not a socket should generate ENOTSOCK
EXPECT_EQ(-1, ki_setsockopt(0, SOL_SOCKET, SO_ACCEPTCONN, optval, len));
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, Shutdown) {
EXPECT_LT(ki_shutdown(-1, SHUT_RDWR), 0);
EXPECT_EQ(errno, EBADF);
EXPECT_LT(ki_shutdown(0, SHUT_RDWR), 0);
EXPECT_EQ(errno, ENOTSOCK);
}
TEST_F(SocketTest, SocketInetRawUnsupported) {
EXPECT_LT(ki_socket(AF_INET, SOCK_RAW, 0), 0);
EXPECT_EQ(errno, EPROTONOSUPPORT);
}
TEST_F(SocketTest, SocketpairUnsupported) {
int sv[2];
EXPECT_LT(ki_socketpair(AF_INET, SOCK_STREAM, 0, NULL), 0);
EXPECT_EQ(errno, EFAULT);
EXPECT_LT(ki_socketpair(AF_INET, SOCK_STREAM, 0, sv), 0);
EXPECT_EQ(errno, EOPNOTSUPP);
EXPECT_LT(ki_socketpair(AF_INET6, SOCK_STREAM, 0, sv), 0);
EXPECT_EQ(errno, EOPNOTSUPP);
EXPECT_LT(ki_socketpair(AF_UNIX, SOCK_RAW, 0, sv), 0);
EXPECT_EQ(errno, EPROTOTYPE);
EXPECT_LT(ki_socketpair(AF_MAX, SOCK_STREAM, 0, sv), 0);
EXPECT_EQ(errno, EAFNOSUPPORT);
}
class UnixSocketTest : public ::testing::Test {
public:
UnixSocketTest() { sv_[0] = sv_[1] = -1; }
void SetUp() {
ASSERT_EQ(0, ki_push_state_for_testing());
ASSERT_EQ(0, ki_init(&kp_));
}
void TearDown() {
if (sv_[0] != -1)
EXPECT_EQ(0, ki_close(sv_[0]));
if (sv_[1] != -1)
EXPECT_EQ(0, ki_close(sv_[1]));
ki_uninit();
}
protected:
KernelProxy kp_;
int sv_[2];
};
TEST_F(UnixSocketTest, Socket) {
EXPECT_EQ(-1, ki_socket(AF_UNIX, SOCK_STREAM, 0));
EXPECT_EQ(EAFNOSUPPORT, errno);
}
TEST_F(UnixSocketTest, Socketpair) {
errno = 0;
EXPECT_EQ(0, ki_socketpair(AF_UNIX, SOCK_STREAM, 0, sv_));
EXPECT_EQ(0, errno);
EXPECT_LE(0, sv_[0]);
EXPECT_LE(0, sv_[1]);
errno = 0;
EXPECT_EQ(0, ki_socketpair(AF_UNIX, SOCK_DGRAM, 0, sv_));
EXPECT_EQ(0, errno);
EXPECT_LE(0, sv_[0]);
EXPECT_LE(0, sv_[1]);
}
TEST_F(UnixSocketTest, SendRecvStream) {
char outbuf[256];
char inbuf[512];
memset(outbuf, 0xA5, sizeof(outbuf));
memset(inbuf, 0x3C, sizeof(inbuf));
EXPECT_EQ(0, ki_socketpair(AF_UNIX, SOCK_STREAM, 0, sv_));
int len1 = ki_send(sv_[0], outbuf, sizeof(outbuf), /* flags */ 0);
EXPECT_EQ(sizeof(outbuf), len1);
// The buffers should be different.
EXPECT_NE(0, memcmp(outbuf, inbuf, sizeof(outbuf)));
int len2 = ki_recv(sv_[1], inbuf, sizeof(inbuf), /* flags */ 0);
EXPECT_EQ(sizeof(outbuf), len2);
EXPECT_EQ(0, memcmp(outbuf, inbuf, sizeof(outbuf)));
// A reader should block after trying to read at this point.
EXPECT_EQ(-1, ki_recv(sv_[1], inbuf, sizeof(inbuf), MSG_DONTWAIT));
EXPECT_EQ(EAGAIN, errno);
// Send data back in the opposite direction.
memset(inbuf, 0x3C, sizeof(inbuf));
EXPECT_NE(0, memcmp(outbuf, inbuf, sizeof(outbuf)));
len1 = ki_send(sv_[1], outbuf, sizeof(outbuf), /* flags */ 0);
EXPECT_EQ(sizeof(outbuf), len1);
EXPECT_NE(0, memcmp(outbuf, inbuf, sizeof(outbuf)));
len2 = ki_recv(sv_[0], inbuf, sizeof(inbuf), /* flags */ 0);
EXPECT_EQ(sizeof(outbuf), len2);
EXPECT_EQ(0, memcmp(outbuf, inbuf, sizeof(outbuf)));
EXPECT_EQ(-1, ki_recv(sv_[0], inbuf, sizeof(inbuf), MSG_DONTWAIT));
EXPECT_EQ(EAGAIN, errno);
}
TEST_F(UnixSocketTest, RecvNonBlockingStream) {
char buf[128];
EXPECT_EQ(0, ki_socketpair(AF_UNIX, SOCK_STREAM, 0, sv_));
EXPECT_EQ(-1, ki_recv(sv_[0], buf, sizeof(buf), MSG_DONTWAIT));
EXPECT_EQ(EAGAIN, errno);
struct pollfd pollfd = {sv_[0], POLLIN | POLLOUT, 0};
EXPECT_EQ(1, ki_poll(&pollfd, 1, 0));
EXPECT_EQ(POLLOUT, pollfd.revents & POLLOUT);
EXPECT_NE(POLLIN, pollfd.revents & POLLIN);
}
TEST_F(UnixSocketTest, SendRecvDgram) {
char outbuf1[256];
char outbuf2[128];
char inbuf[512];
memset(outbuf1, 0xA4, sizeof(outbuf1));
memset(outbuf2, 0xA5, sizeof(outbuf2));
memset(inbuf, 0x3C, sizeof(inbuf));
EXPECT_EQ(0, ki_socketpair(AF_UNIX, SOCK_DGRAM, 0, sv_));
int len1 = ki_send(sv_[0], outbuf1, sizeof(outbuf1), /* flags */ 0);
EXPECT_EQ(sizeof(outbuf1), len1);
// The buffers should be different.
EXPECT_NE(0, memcmp(outbuf1, inbuf, sizeof(outbuf1)));
int len2 = ki_send(sv_[0], outbuf2, sizeof(outbuf2), /* flags */ 0);
EXPECT_EQ(sizeof(outbuf2), len2);
// Make sure the datagram boundaries are respected.
len1 = ki_recv(sv_[1], inbuf, sizeof(inbuf), /* flags */ 0);
EXPECT_EQ(sizeof(outbuf1), len1);
EXPECT_EQ(0, memcmp(outbuf1, inbuf, sizeof(outbuf1)));
len2 = ki_recv(sv_[1], inbuf, sizeof(inbuf), /* flags */ 0);
EXPECT_EQ(sizeof(outbuf2), len2);
EXPECT_EQ(0, memcmp(outbuf2, inbuf, sizeof(outbuf2)));
// A reader should block after trying to read at this point.
EXPECT_EQ(-1, ki_recv(sv_[1], inbuf, sizeof(inbuf), MSG_DONTWAIT));
EXPECT_EQ(EAGAIN, errno);
// Send a datagram larger than the recv buffer, and check for overflow.
memset(inbuf, 0x3C, sizeof(inbuf));
EXPECT_NE(0, memcmp(outbuf1, inbuf, sizeof(outbuf1)));
len1 = ki_send(sv_[1], outbuf1, sizeof(outbuf1), /* flags */ 0);
EXPECT_EQ(sizeof(outbuf1), len1);
len2 = ki_recv(sv_[0], inbuf, 16, /* flags */ 0);
EXPECT_EQ(16, len2);
EXPECT_EQ(0, memcmp(outbuf1, inbuf, 16));
EXPECT_EQ(0x3C, inbuf[16]);
// Verify that the remainder of the packet was discarded, and there
// is nothing left to receive.
EXPECT_EQ(-1, ki_recv(sv_[0], inbuf, sizeof(inbuf), MSG_DONTWAIT));
EXPECT_EQ(EAGAIN, errno);
}
TEST_F(UnixSocketTest, RecvNonBlockingDgram) {
char buf[128];
EXPECT_EQ(0, ki_socketpair(AF_UNIX, SOCK_DGRAM, 0, sv_));
EXPECT_EQ(-1, ki_recv(sv_[0], buf, sizeof(buf), MSG_DONTWAIT));
EXPECT_EQ(EAGAIN, errno);
struct pollfd pollfd = {sv_[0], POLLIN | POLLOUT, 0};
EXPECT_EQ(1, ki_poll(&pollfd, 1, 0));
EXPECT_EQ(POLLOUT, pollfd.revents & POLLOUT);
EXPECT_NE(POLLIN, pollfd.revents & POLLIN);
}
namespace {
using std::vector;
using std::min;
using std::advance;
using std::distance;
typedef vector<uint8_t> Buffer;
typedef Buffer::iterator BufferIterator;
typedef Buffer::const_iterator BufferConstIterator;
const size_t kReceiveBufferSize = 2 * 1024 * 1024;
const size_t kThreadSendSize = 512 * 1024;
const size_t kMainSendSize = 1024 * 1024;
const uint8_t kThreadPattern[] = {0xAA, 0x12, 0x55, 0x34, 0xCC, 0x33};
// Exercises the implementation of an AF_UNIX socket. Will read from the socket
// into read_buf until EOF (or read_buf is full) whenever the socket is readable
// and write send_size number of bytes into the socket according to pattern.
// The test UnixSocketMultithreadedTest.SendRecv uses this function to quickly
// push about 1 Meg of data between two threads over a socketpair.
void ReadWriteSocket(int fd,
const uint8_t* pattern,
const size_t pattern_size,
const size_t send_size,
Buffer* read_vector) {
Buffer send;
while (send.size() != send_size) {
size_t s = min(pattern_size, send_size - send.size());
send.insert(send.end(), &pattern[0], &pattern[s]);
}
bool read_complete = false, write_complete = false;
size_t received_count = 0;
read_vector->resize(kReceiveBufferSize);
BufferConstIterator send_iterator(send.begin());
BufferConstIterator send_end(send.end());
while (!read_complete || !write_complete) {
fd_set rfd;
FD_ZERO(&rfd);
if (!read_complete) {
FD_SET(fd, &rfd);
}
fd_set wfd;
FD_ZERO(&wfd);
if (!write_complete) {
FD_SET(fd, &wfd);
}
ASSERT_LT(0, select(fd + 1, &rfd, &wfd, NULL, NULL));
if (!FD_ISSET(fd, &rfd) && !FD_ISSET(fd, &wfd)) {
FAIL() << "Select returned with neither readable nor writable fd.";
}
if (!read_complete && FD_ISSET(fd, &rfd)) {
read_vector->resize(read_vector->size() + kReceiveBufferSize);
ssize_t len =
ki_recv(fd, read_vector->data() + received_count,
read_vector->size() - received_count, /* flags */ 0);
ASSERT_LE(0, len) << "Read should succeed";
if (len == 0) {
read_complete = true;
}
received_count += len;
read_vector->resize(received_count);
}
if (!write_complete && FD_ISSET(fd, &wfd)) {
ssize_t len = ki_send(fd, &(*send_iterator),
distance(send_iterator, send_end), /* flags */ 0);
ASSERT_LE(0, len) << "Write should succeed";
advance(send_iterator, len);
if (send_iterator == send_end) {
EXPECT_EQ(0, ki_shutdown(fd, SHUT_WR));
write_complete = true;
}
}
}
}
class UnixSocketMultithreadedTest : public UnixSocketTest {
public:
void SetUp() {
UnixSocketTest::SetUp();
EXPECT_EQ(0, ki_socketpair(AF_UNIX, SOCK_STREAM, 0, sv_));
}
void TearDown() { UnixSocketTest::TearDown(); }
pthread_t CreateThread() {
pthread_t id;
EXPECT_EQ(0, pthread_create(&id, NULL, ThreadThunk, this));
return id;
}
private:
static void* ThreadThunk(void* ptr) {
return static_cast<UnixSocketMultithreadedTest*>(ptr)->ThreadEntry();
}
void* ThreadEntry() {
int fd = sv_[1];
ReadWriteSocket(fd, kThreadPattern, sizeof(kThreadPattern), kThreadSendSize,
&thread_buffer_);
return NULL;
}
protected:
Buffer thread_buffer_;
};
} // namespace
TEST_F(UnixSocketMultithreadedTest, SendRecv) {
pthread_t thread = CreateThread();
uint8_t pattern[] = {0xA5, 0x00, 0xC3, 0xFF};
size_t pattern_size = sizeof(pattern);
Buffer main_read_buf;
ReadWriteSocket(sv_[0], pattern, pattern_size, kMainSendSize, &main_read_buf);
pthread_join(thread, NULL);
EXPECT_EQ(kMainSendSize, thread_buffer_.size());
EXPECT_EQ(kThreadSendSize, main_read_buf.size());
for (size_t i = 0; i != thread_buffer_.size(); ++i) {
ASSERT_EQ(pattern[i % pattern_size], thread_buffer_[i])
<< "Invalid result at position " << i << " in data received by thread";
}
for (size_t i = 0; i != main_read_buf.size(); ++i) {
ASSERT_EQ(kThreadPattern[i % sizeof(kThreadPattern)], main_read_buf[i])
<< "Invalid result at position " << i << " in data received by main";
}
}
TEST(SocketUtilityFunctions, Htonl) {
uint32_t host_long = 0x44332211;
uint32_t network_long = htonl(host_long);
uint8_t network_bytes[4];
memcpy(network_bytes, &network_long, 4);
EXPECT_EQ(network_bytes[0], 0x44);
EXPECT_EQ(network_bytes[1], 0x33);
EXPECT_EQ(network_bytes[2], 0x22);
EXPECT_EQ(network_bytes[3], 0x11);
}
TEST(SocketUtilityFunctions, Htons) {
uint16_t host_short = 0x2211;
uint16_t network_short = htons(host_short);
uint8_t network_bytes[2];
memcpy(network_bytes, &network_short, 2);
EXPECT_EQ(network_bytes[0], 0x22);
EXPECT_EQ(network_bytes[1], 0x11);
}
static struct in_addr generate_ipv4_addr(uint8_t* tuple) {
unsigned char addr[4];
addr[0] = static_cast<unsigned char>(tuple[0]);
addr[1] = static_cast<unsigned char>(tuple[1]);
addr[2] = static_cast<unsigned char>(tuple[2]);
addr[3] = static_cast<unsigned char>(tuple[3]);
struct in_addr real_addr;
memcpy(&real_addr, addr, 4);
return real_addr;
}
static struct in6_addr generate_ipv6_addr(uint16_t* tuple) {
unsigned char addr[16];
for (int i = 0; i < 8; i++) {
addr[2*i] = (tuple[i] >> 8) & 0xFF;
addr[2*i+1] = tuple[i] & 0xFF;
}
struct in6_addr real_addr;
memcpy(&real_addr, addr, 16);
return real_addr;
}
TEST(SocketUtilityFunctions, Inet_addr) {
// Fails for if string contains non-integers.
ASSERT_EQ(INADDR_NONE, inet_addr("foobar"));
// Fails if there are too many quads
ASSERT_EQ(INADDR_NONE, inet_addr("0.0.0.0.0"));
// Fails if a single element is > 255
ASSERT_EQ(INADDR_NONE, inet_addr("999.0.0.0"));
// Fails if a single element is negative.
ASSERT_EQ(INADDR_NONE, inet_addr("-55.0.0.0"));
// In tripple, notation third integer cannot be larger
// and 16bit unsigned int.
ASSERT_EQ(INADDR_NONE, inet_addr("1.2.66000"));
// Success cases.
// Normal dotted-quad address.
uint32_t expected_addr = ntohl(0x07060504);
ASSERT_EQ(expected_addr, inet_addr("7.6.5.4"));
expected_addr = ntohl(0xffffffff);
ASSERT_EQ(expected_addr, inet_addr("255.255.255.255"));
// Tripple case
expected_addr = ntohl(1 << 24 | 2 << 16 | 3);
ASSERT_EQ(expected_addr, inet_addr("1.2.3"));
expected_addr = ntohl(1 << 24 | 2 << 16 | 300);
ASSERT_EQ(expected_addr, inet_addr("1.2.300"));
// Double case
expected_addr = ntohl(1 << 24 | 20000);
ASSERT_EQ(expected_addr, inet_addr("1.20000"));
expected_addr = ntohl(1 << 24 | 2);
ASSERT_EQ(expected_addr, inet_addr("1.2"));
// Single case
expected_addr = ntohl(255);
ASSERT_EQ(expected_addr, inet_addr("255"));
expected_addr = ntohl(4000000000U);
ASSERT_EQ(expected_addr, inet_addr("4000000000"));
}
TEST(SocketUtilityFunctions, Inet_aton) {
struct in_addr addr;
// Failure cases
ASSERT_EQ(0, inet_aton("foobar", &addr));
ASSERT_EQ(0, inet_aton("0.0.0.0.0", &addr));
ASSERT_EQ(0, inet_aton("999.0.0.0", &addr));
// Success cases
uint32_t expected_addr = htonl(0xff020304);
ASSERT_NE(0, inet_aton("255.2.3.4", &addr));
ASSERT_EQ(expected_addr, addr.s_addr);
expected_addr = htonl(0x01000002);
ASSERT_NE(0, inet_aton("1.2", &addr));
ASSERT_EQ(expected_addr, addr.s_addr);
expected_addr = htonl(0x01020003);
ASSERT_NE(0, inet_aton("1.2.3", &addr));
ASSERT_EQ(expected_addr, addr.s_addr);
expected_addr = htonl(0x0000100);
ASSERT_NE(0, inet_aton("256", &addr));
ASSERT_EQ(expected_addr, addr.s_addr);
}
TEST(SocketUtilityFunctions, Inet_ntoa) {
struct {
unsigned char addr_tuple[4];
const char* output;
} tests[] = {
{ { 0, 0, 0, 0 }, "0.0.0.0" },
{ { 127, 0, 0, 1 }, "127.0.0.1" },
{ { 255, 255, 255, 255 }, "255.255.255.255" },
};
for (size_t i = 0; i < sizeof(tests) / sizeof(tests[0]); ++i) {
char* stringified_addr = inet_ntoa(generate_ipv4_addr(tests[i].addr_tuple));
ASSERT_TRUE(NULL != stringified_addr);
EXPECT_STREQ(tests[i].output, stringified_addr);
}
}
TEST(SocketUtilityFunctions, Inet_ntop_ipv4) {
struct {
unsigned char addr_tuple[4];
const char* output;
} tests[] = {
{ { 0, 0, 0, 0 }, "0.0.0.0" },
{ { 127, 0, 0, 1 }, "127.0.0.1" },
{ { 255, 255, 255, 255 }, "255.255.255.255" },
};
for (size_t i = 0; i < sizeof(tests) / sizeof(tests[0]); ++i) {
char stringified_addr[INET_ADDRSTRLEN];
struct in_addr real_addr = generate_ipv4_addr(tests[i].addr_tuple);
EXPECT_TRUE(NULL != inet_ntop(AF_INET, &real_addr,
stringified_addr, INET_ADDRSTRLEN));
EXPECT_STREQ(tests[i].output, stringified_addr);
}
}
TEST(SocketUtilityFunctions, Inet_ntop_ipv6) {
struct {
unsigned short addr_tuple[8];
const char* output;
} tests[] = {
{ { 0, 0, 0, 0, 0, 0, 0, 0 }, "::" },
{ { 1, 2, 3, 0, 0, 0, 0, 0 }, "1:2:3::" },
{ { 0, 0, 0, 0, 0, 1, 2, 3 }, "::1:2:3" },
{ { 0x1234, 0xa, 0x12, 0x0000, 0x5678, 0x9abc, 0xdef, 0xffff },
"1234:a:12:0:5678:9abc:def:ffff" },
{ { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff },
"ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" },
{ { 0, 0, 0, 0, 0, 0xffff, 0x101, 0x101 }, "::ffff:1.1.1.1" },
{ { 0, 0, 0, 0, 0, 0, 0x101, 0x101 }, "::1.1.1.1" },
};
for (size_t i = 0; i < sizeof(tests) / sizeof(tests[0]); ++i) {
char stringified_addr[INET6_ADDRSTRLEN];
struct in6_addr real_addr = generate_ipv6_addr(tests[i].addr_tuple);
EXPECT_TRUE(NULL != inet_ntop(AF_INET6, &real_addr,
stringified_addr, INET6_ADDRSTRLEN));
EXPECT_STREQ(tests[i].output, stringified_addr);
}
}
TEST(SocketUtilityFunctions, Inet_ntop_failure) {
char addr_name[INET6_ADDRSTRLEN];
uint16_t addr6_tuple[8] = { 0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff };
uint8_t addr_tuple[4] = { 255, 255, 255, 255 };
struct in6_addr ipv6_addr = generate_ipv6_addr(addr6_tuple);
struct in_addr ipv4_addr = generate_ipv4_addr(addr_tuple);
EXPECT_EQ(NULL, inet_ntop(AF_UNIX, &ipv6_addr,
addr_name, INET6_ADDRSTRLEN));
EXPECT_EQ(EAFNOSUPPORT, errno);
EXPECT_EQ(NULL, inet_ntop(AF_INET, &ipv4_addr,
addr_name, INET_ADDRSTRLEN - 1));
EXPECT_EQ(ENOSPC, errno);
EXPECT_EQ(NULL, inet_ntop(AF_INET6, &ipv6_addr,
addr_name, INET6_ADDRSTRLEN / 2));
EXPECT_EQ(ENOSPC, errno);
}
TEST(SocketUtilityFunctions, Inet_pton) {
struct {
int family;
const char* input;
const char* output; // NULL means output should match input
} tests[] = {
{ AF_INET, "127.127.12.0", NULL },
{ AF_INET, "0.0.0.0", NULL },
{ AF_INET6, "0:0:0:0:0:0:0:0", "::" },
{ AF_INET6, "1234:5678:9abc:def0:1234:5678:9abc:def0", NULL },
{ AF_INET6, "1:2:3:4:5:6:7:8", NULL },
{ AF_INET6, "a:b:c:d:e:f:1:2", NULL },
{ AF_INET6, "A:B:C:D:E:F:1:2", "a:b:c:d:e:f:1:2" },
{ AF_INET6, "::", "::" },
{ AF_INET6, "::12", "::12" },
{ AF_INET6, "::1:2:3", "::1:2:3" },
{ AF_INET6, "12::", "12::" },
{ AF_INET6, "1:2::", "1:2::" },
{ AF_INET6, "12:0:0:0:0:0:0:0", "12::" },
{ AF_INET6, "1:2:3::4:5", "1:2:3::4:5" },
{ AF_INET6, "::ffff:1.1.1.1", "::ffff:1.1.1.1" },
{ AF_INET6, "ffff::1.1.1.1", "ffff::101:101" },
{ AF_INET6, "::1.1.1.1", "::1.1.1.1" },
};
for (size_t i = 0; i < sizeof(tests) / sizeof(tests[0]); ++i) {
uint8_t addr[16];
ASSERT_TRUE(inet_pton(tests[i].family, tests[i].input, addr))
<< "inet_pton failed for " << tests[i].input;
const char* expected = tests[i].output ? tests[i].output : tests[i].input;
char out_buffer[256];
ASSERT_EQ(out_buffer,
inet_ntop(tests[i].family, addr, out_buffer, sizeof(out_buffer)));
ASSERT_STREQ(expected, out_buffer);
}
}
TEST(SocketUtilityFunctions, Inet_pton_failure) {
// All these are examples of strings that do not map
// to IP address. inet_pton returns 0 on failure.
uint8_t addr[16];
EXPECT_EQ(0, inet_pton(AF_INET, "127.127.12.24312", &addr));
EXPECT_EQ(0, inet_pton(AF_INET, "127.127.12.24 ", &addr));
EXPECT_EQ(0, inet_pton(AF_INET, "127.127.12.0.1", &addr));
EXPECT_EQ(0, inet_pton(AF_INET, "127.127.12. 0", &addr));
EXPECT_EQ(0, inet_pton(AF_INET, " 127.127.12.0", &addr));
EXPECT_EQ(0, inet_pton(AF_INET, "127.127.12.0.", &addr));
EXPECT_EQ(0, inet_pton(AF_INET, ".127.127.12.0", &addr));
EXPECT_EQ(0, inet_pton(AF_INET, "127.127.12.0x0", &addr));
EXPECT_EQ(0, inet_pton(AF_INET6, ":::", &addr));
EXPECT_EQ(0, inet_pton(AF_INET6, "0:::0", &addr));
EXPECT_EQ(0, inet_pton(AF_INET6, "0::0:0::1", &addr));
EXPECT_EQ(0, inet_pton(AF_INET6, "0:0:0:0:0:0:1: 2", &addr));
EXPECT_EQ(0, inet_pton(AF_INET6, " 0:0:0:0:0:0:1:2", &addr));
EXPECT_EQ(0, inet_pton(AF_INET6, "0:0:0:0:0:0:1:2 ", &addr));
EXPECT_EQ(0, inet_pton(AF_INET6, ":0:0:0:0:0:0:1:2", &addr));
EXPECT_EQ(0, inet_pton(AF_INET6, "0:0:0:0:0:0:1:2:4", &addr));
EXPECT_EQ(0, inet_pton(AF_INET6, "0:0:0:0:0:0:1:0.0.0.0", &addr));
EXPECT_EQ(0, inet_pton(AF_INET6, "::0.0.0.0:1", &addr));
EXPECT_EQ(0, inet_pton(AF_INET6, "::0.0.0.0.0", &addr));
EXPECT_EQ(0, inet_pton(AF_INET6, "::1.2.3.4.5.6.7.8", &addr));
}
TEST(SocketUtilityFunctions, Ntohs) {
uint8_t network_bytes[2] = { 0x22, 0x11 };
uint16_t network_short;
memcpy(&network_short, network_bytes, 2);
uint16_t host_short = ntohs(network_short);
EXPECT_EQ(host_short, 0x2211);
}
TEST(SocketUtilityFunctions, Ntohl) {
uint8_t network_bytes[4] = { 0x44, 0x33, 0x22, 0x11 };
uint32_t network_long;
memcpy(&network_long, network_bytes, 4);
uint32_t host_long = ntohl(network_long);
EXPECT_EQ(host_long, 0x44332211);
}
#endif // PROVIDES_SOCKETPAIR_API