// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "net/socket/udp_socket_win.h"
#include <winsock2.h>
#include <mstcpip.h>
#include <memory>
#include "base/check_op.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/lazy_instance.h"
#include "base/memory/raw_ptr.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/notreached.h"
#include "base/rand_util.h"
#include "base/task/thread_pool.h"
#include "net/base/io_buffer.h"
#include "net/base/ip_address.h"
#include "net/base/ip_endpoint.h"
#include "net/base/net_errors.h"
#include "net/base/network_activity_monitor.h"
#include "net/base/network_change_notifier.h"
#include "net/base/sockaddr_storage.h"
#include "net/base/winsock_init.h"
#include "net/base/winsock_util.h"
#include "net/log/net_log.h"
#include "net/log/net_log_event_type.h"
#include "net/log/net_log_source.h"
#include "net/log/net_log_source_type.h"
#include "net/socket/socket_descriptor.h"
#include "net/socket/socket_options.h"
#include "net/socket/socket_tag.h"
#include "net/socket/udp_net_log_parameters.h"
#include "net/traffic_annotation/network_traffic_annotation.h"
namespace net {
// This class encapsulates all the state that has to be preserved as long as
// there is a network IO operation in progress. If the owner UDPSocketWin
// is destroyed while an operation is in progress, the Core is detached and it
// lives until the operation completes and the OS doesn't reference any resource
// declared on this class anymore.
class UDPSocketWin::Core : public base::RefCounted<Core> {
public:
explicit Core(UDPSocketWin* socket);
Core(const Core&) = delete;
Core& operator=(const Core&) = delete;
// Start watching for the end of a read or write operation.
void WatchForRead();
void WatchForWrite();
// The UDPSocketWin is going away.
void Detach() { socket_ = nullptr; }
// The separate OVERLAPPED variables for asynchronous operation.
OVERLAPPED read_overlapped_;
OVERLAPPED write_overlapped_;
// The buffers used in Read() and Write().
scoped_refptr<IOBuffer> read_iobuffer_;
scoped_refptr<IOBuffer> write_iobuffer_;
// The struct for packet metadata passed to WSARecvMsg().
std::unique_ptr<WSAMSG> read_message_ = nullptr;
// Big enough for IP_ECN or IPV6_ECN, nothing more.
char read_control_buffer_[WSA_CMSG_SPACE(sizeof(int))];
// The address storage passed to WSARecvFrom().
SockaddrStorage recv_addr_storage_;
private:
friend class base::RefCounted<Core>;
class ReadDelegate : public base::win::ObjectWatcher::Delegate {
public:
explicit ReadDelegate(Core* core) : core_(core) {}
~ReadDelegate() override = default;
// base::ObjectWatcher::Delegate methods:
void OnObjectSignaled(HANDLE object) override;
private:
const raw_ptr<Core> core_;
};
class WriteDelegate : public base::win::ObjectWatcher::Delegate {
public:
explicit WriteDelegate(Core* core) : core_(core) {}
~WriteDelegate() override = default;
// base::ObjectWatcher::Delegate methods:
void OnObjectSignaled(HANDLE object) override;
private:
const raw_ptr<Core> core_;
};
~Core();
// The socket that created this object.
raw_ptr<UDPSocketWin> socket_;
// |reader_| handles the signals from |read_watcher_|.
ReadDelegate reader_;
// |writer_| handles the signals from |write_watcher_|.
WriteDelegate writer_;
// |read_watcher_| watches for events from Read().
base::win::ObjectWatcher read_watcher_;
// |write_watcher_| watches for events from Write();
base::win::ObjectWatcher write_watcher_;
};
UDPSocketWin::Core::Core(UDPSocketWin* socket)
: socket_(socket),
reader_(this),
writer_(this) {
memset(&read_overlapped_, 0, sizeof(read_overlapped_));
memset(&write_overlapped_, 0, sizeof(write_overlapped_));
read_overlapped_.hEvent = WSACreateEvent();
write_overlapped_.hEvent = WSACreateEvent();
}
UDPSocketWin::Core::~Core() {
// Make sure the message loop is not watching this object anymore.
read_watcher_.StopWatching();
write_watcher_.StopWatching();
WSACloseEvent(read_overlapped_.hEvent);
memset(&read_overlapped_, 0xaf, sizeof(read_overlapped_));
WSACloseEvent(write_overlapped_.hEvent);
memset(&write_overlapped_, 0xaf, sizeof(write_overlapped_));
}
void UDPSocketWin::Core::WatchForRead() {
// We grab an extra reference because there is an IO operation in progress.
// Balanced in ReadDelegate::OnObjectSignaled().
AddRef();
read_watcher_.StartWatchingOnce(read_overlapped_.hEvent, &reader_);
}
void UDPSocketWin::Core::WatchForWrite() {
// We grab an extra reference because there is an IO operation in progress.
// Balanced in WriteDelegate::OnObjectSignaled().
AddRef();
write_watcher_.StartWatchingOnce(write_overlapped_.hEvent, &writer_);
}
void UDPSocketWin::Core::ReadDelegate::OnObjectSignaled(HANDLE object) {
DCHECK_EQ(object, core_->read_overlapped_.hEvent);
if (core_->socket_)
core_->socket_->DidCompleteRead();
core_->Release();
}
void UDPSocketWin::Core::WriteDelegate::OnObjectSignaled(HANDLE object) {
DCHECK_EQ(object, core_->write_overlapped_.hEvent);
if (core_->socket_)
core_->socket_->DidCompleteWrite();
core_->Release();
}
//-----------------------------------------------------------------------------
QwaveApi::QwaveApi() {
HMODULE qwave = LoadLibrary(L"qwave.dll");
if (!qwave)
return;
create_handle_func_ =
(CreateHandleFn)GetProcAddress(qwave, "QOSCreateHandle");
close_handle_func_ =
(CloseHandleFn)GetProcAddress(qwave, "QOSCloseHandle");
add_socket_to_flow_func_ =
(AddSocketToFlowFn)GetProcAddress(qwave, "QOSAddSocketToFlow");
remove_socket_from_flow_func_ =
(RemoveSocketFromFlowFn)GetProcAddress(qwave, "QOSRemoveSocketFromFlow");
set_flow_func_ = (SetFlowFn)GetProcAddress(qwave, "QOSSetFlow");
if (create_handle_func_ && close_handle_func_ &&
add_socket_to_flow_func_ && remove_socket_from_flow_func_ &&
set_flow_func_) {
qwave_supported_ = true;
}
}
QwaveApi* QwaveApi::GetDefault() {
static base::LazyInstance<QwaveApi>::Leaky lazy_qwave =
LAZY_INSTANCE_INITIALIZER;
return lazy_qwave.Pointer();
}
bool QwaveApi::qwave_supported() const {
return qwave_supported_;
}
void QwaveApi::OnFatalError() {
// Disable everything moving forward.
qwave_supported_ = false;
}
BOOL QwaveApi::CreateHandle(PQOS_VERSION version, PHANDLE handle) {
return create_handle_func_(version, handle);
}
BOOL QwaveApi::CloseHandle(HANDLE handle) {
return close_handle_func_(handle);
}
BOOL QwaveApi::AddSocketToFlow(HANDLE handle,
SOCKET socket,
PSOCKADDR addr,
QOS_TRAFFIC_TYPE traffic_type,
DWORD flags,
PQOS_FLOWID flow_id) {
return add_socket_to_flow_func_(handle, socket, addr, traffic_type, flags,
flow_id);
}
BOOL QwaveApi::RemoveSocketFromFlow(HANDLE handle,
SOCKET socket,
QOS_FLOWID flow_id,
DWORD reserved) {
return remove_socket_from_flow_func_(handle, socket, flow_id, reserved);
}
BOOL QwaveApi::SetFlow(HANDLE handle,
QOS_FLOWID flow_id,
QOS_SET_FLOW op,
ULONG size,
PVOID data,
DWORD reserved,
LPOVERLAPPED overlapped) {
return set_flow_func_(handle, flow_id, op, size, data, reserved, overlapped);
}
//-----------------------------------------------------------------------------
UDPSocketWin::UDPSocketWin(DatagramSocket::BindType bind_type,
net::NetLog* net_log,
const net::NetLogSource& source)
: socket_(INVALID_SOCKET),
socket_options_(SOCKET_OPTION_MULTICAST_LOOP),
net_log_(NetLogWithSource::Make(net_log, NetLogSourceType::UDP_SOCKET)) {
EnsureWinsockInit();
net_log_.BeginEventReferencingSource(NetLogEventType::SOCKET_ALIVE, source);
}
UDPSocketWin::UDPSocketWin(DatagramSocket::BindType bind_type,
NetLogWithSource source_net_log)
: socket_(INVALID_SOCKET),
socket_options_(SOCKET_OPTION_MULTICAST_LOOP),
net_log_(source_net_log) {
EnsureWinsockInit();
net_log_.BeginEventReferencingSource(NetLogEventType::SOCKET_ALIVE,
net_log_.source());
}
UDPSocketWin::~UDPSocketWin() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
Close();
net_log_.EndEvent(NetLogEventType::SOCKET_ALIVE);
}
int UDPSocketWin::Open(AddressFamily address_family) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK_EQ(socket_, INVALID_SOCKET);
auto owned_socket_count = TryAcquireGlobalUDPSocketCount();
if (owned_socket_count.empty())
return ERR_INSUFFICIENT_RESOURCES;
owned_socket_count_ = std::move(owned_socket_count);
addr_family_ = ConvertAddressFamily(address_family);
socket_ = CreatePlatformSocket(addr_family_, SOCK_DGRAM, IPPROTO_UDP);
if (socket_ == INVALID_SOCKET) {
owned_socket_count_.Reset();
return MapSystemError(WSAGetLastError());
}
ConfigureOpenedSocket();
return OK;
}
int UDPSocketWin::AdoptOpenedSocket(AddressFamily address_family,
SOCKET socket) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
auto owned_socket_count = TryAcquireGlobalUDPSocketCount();
if (owned_socket_count.empty()) {
return ERR_INSUFFICIENT_RESOURCES;
}
owned_socket_count_ = std::move(owned_socket_count);
addr_family_ = ConvertAddressFamily(address_family);
socket_ = socket;
ConfigureOpenedSocket();
return OK;
}
void UDPSocketWin::ConfigureOpenedSocket() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (!use_non_blocking_io_) {
core_ = base::MakeRefCounted<Core>(this);
} else {
read_write_event_.Set(WSACreateEvent());
WSAEventSelect(socket_, read_write_event_.Get(), FD_READ | FD_WRITE);
}
}
void UDPSocketWin::Close() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
owned_socket_count_.Reset();
if (socket_ == INVALID_SOCKET)
return;
// Remove socket_ from the QoS subsystem before we invalidate it.
dscp_manager_ = nullptr;
// Zero out any pending read/write callback state.
read_callback_.Reset();
recv_from_address_ = nullptr;
write_callback_.Reset();
base::TimeTicks start_time = base::TimeTicks::Now();
closesocket(socket_);
UMA_HISTOGRAM_TIMES("Net.UDPSocketWinClose",
base::TimeTicks::Now() - start_time);
socket_ = INVALID_SOCKET;
addr_family_ = 0;
is_connected_ = false;
// Release buffers to free up memory.
read_iobuffer_ = nullptr;
read_iobuffer_len_ = 0;
write_iobuffer_ = nullptr;
write_iobuffer_len_ = 0;
read_write_watcher_.StopWatching();
read_write_event_.Close();
event_pending_.InvalidateWeakPtrs();
if (core_) {
core_->Detach();
core_ = nullptr;
}
}
int UDPSocketWin::GetPeerAddress(IPEndPoint* address) const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(address);
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
// TODO(szym): Simplify. http://crbug.com/126152
if (!remote_address_.get()) {
SockaddrStorage storage;
if (getpeername(socket_, storage.addr, &storage.addr_len))
return MapSystemError(WSAGetLastError());
auto remote_address = std::make_unique<IPEndPoint>();
if (!remote_address->FromSockAddr(storage.addr, storage.addr_len))
return ERR_ADDRESS_INVALID;
remote_address_ = std::move(remote_address);
}
*address = *remote_address_;
return OK;
}
int UDPSocketWin::GetLocalAddress(IPEndPoint* address) const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(address);
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
// TODO(szym): Simplify. http://crbug.com/126152
if (!local_address_.get()) {
SockaddrStorage storage;
if (getsockname(socket_, storage.addr, &storage.addr_len))
return MapSystemError(WSAGetLastError());
auto local_address = std::make_unique<IPEndPoint>();
if (!local_address->FromSockAddr(storage.addr, storage.addr_len))
return ERR_ADDRESS_INVALID;
local_address_ = std::move(local_address);
net_log_.AddEvent(NetLogEventType::UDP_LOCAL_ADDRESS, [&] {
return CreateNetLogUDPConnectParams(*local_address_,
handles::kInvalidNetworkHandle);
});
}
*address = *local_address_;
return OK;
}
int UDPSocketWin::Read(IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback) {
return RecvFrom(buf, buf_len, nullptr, std::move(callback));
}
int UDPSocketWin::RecvFrom(IOBuffer* buf,
int buf_len,
IPEndPoint* address,
CompletionOnceCallback callback) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK_NE(INVALID_SOCKET, socket_);
CHECK(read_callback_.is_null());
DCHECK(!recv_from_address_);
DCHECK(!callback.is_null()); // Synchronous operation not supported.
DCHECK_GT(buf_len, 0);
int nread = core_ ? InternalRecvFromOverlapped(buf, buf_len, address)
: InternalRecvFromNonBlocking(buf, buf_len, address);
if (nread != ERR_IO_PENDING)
return nread;
read_callback_ = std::move(callback);
recv_from_address_ = address;
return ERR_IO_PENDING;
}
int UDPSocketWin::Write(
IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback,
const NetworkTrafficAnnotationTag& /* traffic_annotation */) {
return SendToOrWrite(buf, buf_len, remote_address_.get(),
std::move(callback));
}
int UDPSocketWin::SendTo(IOBuffer* buf,
int buf_len,
const IPEndPoint& address,
CompletionOnceCallback callback) {
if (dscp_manager_) {
// Alert DscpManager in case this is a new remote address. Failure to
// apply Dscp code is never fatal.
int rv = dscp_manager_->PrepareForSend(address);
if (rv != OK)
net_log_.AddEventWithNetErrorCode(NetLogEventType::UDP_SEND_ERROR, rv);
}
return SendToOrWrite(buf, buf_len, &address, std::move(callback));
}
int UDPSocketWin::SendToOrWrite(IOBuffer* buf,
int buf_len,
const IPEndPoint* address,
CompletionOnceCallback callback) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK_NE(INVALID_SOCKET, socket_);
CHECK(write_callback_.is_null());
DCHECK(!callback.is_null()); // Synchronous operation not supported.
DCHECK_GT(buf_len, 0);
DCHECK(!send_to_address_.get());
int nwrite = core_ ? InternalSendToOverlapped(buf, buf_len, address)
: InternalSendToNonBlocking(buf, buf_len, address);
if (nwrite != ERR_IO_PENDING)
return nwrite;
if (address)
send_to_address_ = std::make_unique<IPEndPoint>(*address);
write_callback_ = std::move(callback);
return ERR_IO_PENDING;
}
int UDPSocketWin::Connect(const IPEndPoint& address) {
DCHECK_NE(socket_, INVALID_SOCKET);
net_log_.BeginEvent(NetLogEventType::UDP_CONNECT, [&] {
return CreateNetLogUDPConnectParams(address,
handles::kInvalidNetworkHandle);
});
int rv = SetMulticastOptions();
if (rv != OK)
return rv;
rv = InternalConnect(address);
net_log_.EndEventWithNetErrorCode(NetLogEventType::UDP_CONNECT, rv);
is_connected_ = (rv == OK);
return rv;
}
int UDPSocketWin::InternalConnect(const IPEndPoint& address) {
DCHECK(!is_connected());
DCHECK(!remote_address_.get());
// Always do a random bind.
// Ignore failures, which may happen if the socket was already bound.
DWORD randomize_port_value = 1;
setsockopt(socket_, SOL_SOCKET, SO_RANDOMIZE_PORT,
reinterpret_cast<const char*>(&randomize_port_value),
sizeof(randomize_port_value));
SockaddrStorage storage;
if (!address.ToSockAddr(storage.addr, &storage.addr_len))
return ERR_ADDRESS_INVALID;
int rv = connect(socket_, storage.addr, storage.addr_len);
if (rv < 0)
return MapSystemError(WSAGetLastError());
remote_address_ = std::make_unique<IPEndPoint>(address);
if (dscp_manager_)
dscp_manager_->PrepareForSend(*remote_address_.get());
return rv;
}
int UDPSocketWin::Bind(const IPEndPoint& address) {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK(!is_connected());
int rv = SetMulticastOptions();
if (rv < 0)
return rv;
rv = DoBind(address);
if (rv < 0)
return rv;
local_address_.reset();
is_connected_ = true;
return rv;
}
int UDPSocketWin::BindToNetwork(handles::NetworkHandle network) {
NOTIMPLEMENTED();
return ERR_NOT_IMPLEMENTED;
}
int UDPSocketWin::SetReceiveBufferSize(int32_t size) {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
int rv = SetSocketReceiveBufferSize(socket_, size);
if (rv != 0)
return MapSystemError(WSAGetLastError());
// According to documentation, setsockopt may succeed, but we need to check
// the results via getsockopt to be sure it works on Windows.
int32_t actual_size = 0;
int option_size = sizeof(actual_size);
rv = getsockopt(socket_, SOL_SOCKET, SO_RCVBUF,
reinterpret_cast<char*>(&actual_size), &option_size);
if (rv != 0)
return MapSystemError(WSAGetLastError());
if (actual_size >= size)
return OK;
UMA_HISTOGRAM_CUSTOM_COUNTS("Net.SocketUnchangeableReceiveBuffer",
actual_size, 1000, 1000000, 50);
return ERR_SOCKET_RECEIVE_BUFFER_SIZE_UNCHANGEABLE;
}
int UDPSocketWin::SetSendBufferSize(int32_t size) {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
int rv = SetSocketSendBufferSize(socket_, size);
if (rv != 0)
return MapSystemError(WSAGetLastError());
// According to documentation, setsockopt may succeed, but we need to check
// the results via getsockopt to be sure it works on Windows.
int32_t actual_size = 0;
int option_size = sizeof(actual_size);
rv = getsockopt(socket_, SOL_SOCKET, SO_SNDBUF,
reinterpret_cast<char*>(&actual_size), &option_size);
if (rv != 0)
return MapSystemError(WSAGetLastError());
if (actual_size >= size)
return OK;
UMA_HISTOGRAM_CUSTOM_COUNTS("Net.SocketUnchangeableSendBuffer",
actual_size, 1000, 1000000, 50);
return ERR_SOCKET_SEND_BUFFER_SIZE_UNCHANGEABLE;
}
int UDPSocketWin::SetDoNotFragment() {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (addr_family_ == AF_INET6)
return OK;
DWORD val = 1;
int rv = setsockopt(socket_, IPPROTO_IP, IP_DONTFRAGMENT,
reinterpret_cast<const char*>(&val), sizeof(val));
return rv == 0 ? OK : MapSystemError(WSAGetLastError());
}
LPFN_WSARECVMSG UDPSocketWin::GetRecvMsgPointer() {
LPFN_WSARECVMSG rv;
GUID message_code = WSAID_WSARECVMSG;
DWORD size;
if (WSAIoctl(socket_, SIO_GET_EXTENSION_FUNCTION_POINTER, &message_code,
sizeof(message_code), &rv, sizeof(rv), &size, NULL,
NULL) == SOCKET_ERROR) {
return nullptr;
}
return rv;
}
LPFN_WSASENDMSG UDPSocketWin::GetSendMsgPointer() {
LPFN_WSASENDMSG rv;
GUID message_code = WSAID_WSASENDMSG;
DWORD size;
if (WSAIoctl(socket_, SIO_GET_EXTENSION_FUNCTION_POINTER, &message_code,
sizeof(message_code), &rv, sizeof(rv), &size, NULL,
NULL) == SOCKET_ERROR) {
return nullptr;
}
return rv;
}
int UDPSocketWin::LogAndReturnError() const {
int result = MapSystemError(WSAGetLastError());
LogRead(result, nullptr, nullptr);
return result;
}
// Windows documentation recommends using WSASetRecvIPEcn(). However,
// this does not set the option for IPv4 packets on a dual-stack socket.
// It also returns an error when bound to an IPv4-mapped IPv6 address.
int UDPSocketWin::SetRecvTos() {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
IPEndPoint address;
int rv = GetLocalAddress(&address);
if (rv != OK) {
return rv;
}
int v6_only = 0;
int ecn = 1;
if (addr_family_ == AF_INET6 && !address.address().IsIPv4MappedIPv6()) {
rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_RECVECN,
reinterpret_cast<const char*>(&ecn), sizeof(ecn));
if (rv != 0) {
return LogAndReturnError();
}
if (!address.address().IsZero()) {
// If a socket is bound to an address besides IPV6_ANY, it won't receive
// any v4 packets, and therefore is not truly dual-stack.
v6_only = 1;
} else {
int option_size = sizeof(v6_only);
rv = getsockopt(socket_, IPPROTO_IPV6, IPV6_V6ONLY,
reinterpret_cast<char*>(&v6_only), &option_size);
if (rv != 0) {
return LogAndReturnError();
}
}
}
if (v6_only == 0) {
rv = setsockopt(socket_, IPPROTO_IP, IP_RECVECN,
reinterpret_cast<const char*>(&ecn), sizeof(ecn));
if (rv != 0) {
return LogAndReturnError();
}
}
wsa_recv_msg_ = GetRecvMsgPointer();
if (wsa_recv_msg_ == nullptr) {
return LogAndReturnError();
}
report_ecn_ = true;
return 0;
}
void UDPSocketWin::SetMsgConfirm(bool confirm) {}
int UDPSocketWin::AllowAddressReuse() {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(!is_connected());
BOOL true_value = TRUE;
int rv = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
reinterpret_cast<const char*>(&true_value),
sizeof(true_value));
return rv == 0 ? OK : MapSystemError(WSAGetLastError());
}
int UDPSocketWin::SetBroadcast(bool broadcast) {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
BOOL value = broadcast ? TRUE : FALSE;
int rv = setsockopt(socket_, SOL_SOCKET, SO_BROADCAST,
reinterpret_cast<const char*>(&value), sizeof(value));
return rv == 0 ? OK : MapSystemError(WSAGetLastError());
}
int UDPSocketWin::AllowAddressSharingForMulticast() {
// When proper multicast groups are used, Windows further defines the
// address reuse option (SO_REUSEADDR) to ensure all listening sockets can
// receive all incoming messages for the multicast group.
return AllowAddressReuse();
}
void UDPSocketWin::DoReadCallback(int rv) {
DCHECK_NE(rv, ERR_IO_PENDING);
DCHECK(!read_callback_.is_null());
// since Run may result in Read being called, clear read_callback_ up front.
std::move(read_callback_).Run(rv);
}
void UDPSocketWin::DoWriteCallback(int rv) {
DCHECK_NE(rv, ERR_IO_PENDING);
DCHECK(!write_callback_.is_null());
// since Run may result in Write being called, clear write_callback_ up
// front.
std::move(write_callback_).Run(rv);
}
void UDPSocketWin::DidCompleteRead() {
DWORD num_bytes, flags;
BOOL ok = WSAGetOverlappedResult(socket_, &core_->read_overlapped_,
&num_bytes, FALSE, &flags);
WSAResetEvent(core_->read_overlapped_.hEvent);
int result = ok ? num_bytes : MapSystemError(WSAGetLastError());
// Convert address.
IPEndPoint address;
IPEndPoint* address_to_log = nullptr;
if (result >= 0) {
if (address.FromSockAddr(core_->recv_addr_storage_.addr,
core_->recv_addr_storage_.addr_len)) {
if (recv_from_address_) {
*recv_from_address_ = address;
}
address_to_log = &address;
} else {
result = ERR_ADDRESS_INVALID;
}
if (core_->read_message_ != nullptr) {
SetLastTosFromWSAMSG(*core_->read_message_);
}
}
LogRead(result, core_->read_iobuffer_->data(), address_to_log);
core_->read_iobuffer_ = nullptr;
core_->read_message_ = nullptr;
recv_from_address_ = nullptr;
DoReadCallback(result);
}
void UDPSocketWin::DidCompleteWrite() {
DWORD num_bytes, flags;
BOOL ok = WSAGetOverlappedResult(socket_, &core_->write_overlapped_,
&num_bytes, FALSE, &flags);
WSAResetEvent(core_->write_overlapped_.hEvent);
int result = ok ? num_bytes : MapSystemError(WSAGetLastError());
LogWrite(result, core_->write_iobuffer_->data(), send_to_address_.get());
send_to_address_.reset();
core_->write_iobuffer_ = nullptr;
DoWriteCallback(result);
}
void UDPSocketWin::OnObjectSignaled(HANDLE object) {
DCHECK(object == read_write_event_.Get());
WSANETWORKEVENTS network_events;
int os_error = 0;
int rv =
WSAEnumNetworkEvents(socket_, read_write_event_.Get(), &network_events);
// Protects against trying to call the write callback if the read callback
// either closes or destroys |this|.
base::WeakPtr<UDPSocketWin> event_pending = event_pending_.GetWeakPtr();
if (rv == SOCKET_ERROR) {
os_error = WSAGetLastError();
rv = MapSystemError(os_error);
if (read_iobuffer_) {
read_iobuffer_ = nullptr;
read_iobuffer_len_ = 0;
recv_from_address_ = nullptr;
DoReadCallback(rv);
}
// Socket may have been closed or destroyed here.
if (event_pending && write_iobuffer_) {
write_iobuffer_ = nullptr;
write_iobuffer_len_ = 0;
send_to_address_.reset();
DoWriteCallback(rv);
}
return;
}
if ((network_events.lNetworkEvents & FD_READ) && read_iobuffer_) {
OnReadSignaled();
}
if (!event_pending) {
return;
}
if ((network_events.lNetworkEvents & FD_WRITE) && write_iobuffer_) {
OnWriteSignaled();
}
if (!event_pending) {
return;
}
// There's still pending read / write. Watch for further events.
if (read_iobuffer_ || write_iobuffer_) {
WatchForReadWrite();
}
}
void UDPSocketWin::OnReadSignaled() {
int rv = InternalRecvFromNonBlocking(read_iobuffer_.get(), read_iobuffer_len_,
recv_from_address_);
if (rv == ERR_IO_PENDING) {
return;
}
read_iobuffer_ = nullptr;
read_iobuffer_len_ = 0;
recv_from_address_ = nullptr;
DoReadCallback(rv);
}
void UDPSocketWin::OnWriteSignaled() {
int rv = InternalSendToNonBlocking(write_iobuffer_.get(), write_iobuffer_len_,
send_to_address_.get());
if (rv == ERR_IO_PENDING) {
return;
}
write_iobuffer_ = nullptr;
write_iobuffer_len_ = 0;
send_to_address_.reset();
DoWriteCallback(rv);
}
void UDPSocketWin::WatchForReadWrite() {
if (read_write_watcher_.IsWatching()) {
return;
}
bool watched =
read_write_watcher_.StartWatchingOnce(read_write_event_.Get(), this);
DCHECK(watched);
}
void UDPSocketWin::LogRead(int result,
const char* bytes,
const IPEndPoint* address) const {
if (result < 0) {
net_log_.AddEventWithNetErrorCode(NetLogEventType::UDP_RECEIVE_ERROR,
result);
return;
}
if (net_log_.IsCapturing()) {
NetLogUDPDataTransfer(net_log_, NetLogEventType::UDP_BYTES_RECEIVED, result,
bytes, address);
}
activity_monitor::IncrementBytesReceived(result);
}
void UDPSocketWin::LogWrite(int result,
const char* bytes,
const IPEndPoint* address) const {
if (result < 0) {
net_log_.AddEventWithNetErrorCode(NetLogEventType::UDP_SEND_ERROR, result);
return;
}
if (net_log_.IsCapturing()) {
NetLogUDPDataTransfer(net_log_, NetLogEventType::UDP_BYTES_SENT, result,
bytes, address);
}
}
void UDPSocketWin::PopulateWSAMSG(WSAMSG& message,
SockaddrStorage& storage,
WSABUF* data_buffer,
WSABUF& control_buffer,
bool send) {
bool is_ipv6;
if (send && remote_address_.get() != nullptr) {
is_ipv6 = (remote_address_->GetSockAddrFamily() == AF_INET6);
} else {
is_ipv6 = (addr_family_ == AF_INET6);
}
message.name = storage.addr;
message.namelen = storage.addr_len;
message.lpBuffers = data_buffer;
message.dwBufferCount = 1;
message.Control.buf = control_buffer.buf;
message.dwFlags = 0;
if (send) {
message.Control.len = 0;
WSACMSGHDR* cmsg;
message.Control.len += WSA_CMSG_SPACE(sizeof(int));
cmsg = WSA_CMSG_FIRSTHDR(&message);
cmsg->cmsg_len = WSA_CMSG_LEN(sizeof(int));
cmsg->cmsg_level = is_ipv6 ? IPPROTO_IPV6 : IPPROTO_IP;
cmsg->cmsg_type = is_ipv6 ? IPV6_ECN : IP_ECN;
*(int*)WSA_CMSG_DATA(cmsg) = static_cast<int>(send_ecn_);
} else {
message.Control.len = control_buffer.len;
}
}
void UDPSocketWin::SetLastTosFromWSAMSG(WSAMSG& message) {
int ecn = 0;
for (WSACMSGHDR* cmsg = WSA_CMSG_FIRSTHDR(&message); cmsg != NULL;
cmsg = WSA_CMSG_NXTHDR(&message, cmsg)) {
if ((cmsg->cmsg_level == IPPROTO_IPV6 && cmsg->cmsg_type == IPV6_ECN) ||
(cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_ECN)) {
ecn = *(int*)WSA_CMSG_DATA(cmsg);
break;
}
}
last_tos_.ecn = static_cast<EcnCodePoint>(ecn);
}
int UDPSocketWin::InternalRecvFromOverlapped(IOBuffer* buf,
int buf_len,
IPEndPoint* address) {
DCHECK(!core_->read_iobuffer_.get());
DCHECK(!core_->read_message_.get());
SockaddrStorage& storage = core_->recv_addr_storage_;
storage.addr_len = sizeof(storage.addr_storage);
WSABUF read_buffer;
read_buffer.buf = buf->data();
read_buffer.len = buf_len;
DWORD flags = 0;
DWORD num;
CHECK_NE(INVALID_SOCKET, socket_);
int rv;
std::unique_ptr<WSAMSG> message;
if (report_ecn_) {
WSABUF control_buffer;
control_buffer.buf = core_->read_control_buffer_;
control_buffer.len = sizeof(core_->read_control_buffer_);
message = std::make_unique<WSAMSG>();
if (message == nullptr) {
return WSA_NOT_ENOUGH_MEMORY;
}
PopulateWSAMSG(*message, storage, &read_buffer, control_buffer, false);
rv = wsa_recv_msg_(socket_, message.get(), &num, &core_->read_overlapped_,
nullptr);
if (rv == 0) {
SetLastTosFromWSAMSG(*message);
}
} else {
rv = WSARecvFrom(socket_, &read_buffer, 1, &num, &flags, storage.addr,
&storage.addr_len, &core_->read_overlapped_, nullptr);
}
if (rv == 0) {
if (ResetEventIfSignaled(core_->read_overlapped_.hEvent)) {
int result = num;
// Convert address.
IPEndPoint address_storage;
IPEndPoint* address_to_log = nullptr;
if (result >= 0) {
if (address_storage.FromSockAddr(core_->recv_addr_storage_.addr,
core_->recv_addr_storage_.addr_len)) {
if (address) {
*address = address_storage;
}
address_to_log = &address_storage;
} else {
result = ERR_ADDRESS_INVALID;
}
}
LogRead(result, buf->data(), address_to_log);
return result;
}
} else {
int os_error = WSAGetLastError();
if (os_error != WSA_IO_PENDING) {
int result = MapSystemError(os_error);
LogRead(result, nullptr, nullptr);
return result;
}
}
core_->WatchForRead();
core_->read_iobuffer_ = buf;
core_->read_message_ = std::move(message);
return ERR_IO_PENDING;
}
int UDPSocketWin::InternalSendToOverlapped(IOBuffer* buf,
int buf_len,
const IPEndPoint* address) {
DCHECK(!core_->write_iobuffer_.get());
SockaddrStorage storage;
struct sockaddr* addr = storage.addr;
// Convert address.
if (!address) {
addr = nullptr;
storage.addr_len = 0;
} else {
if (!address->ToSockAddr(addr, &storage.addr_len)) {
int result = ERR_ADDRESS_INVALID;
LogWrite(result, nullptr, nullptr);
return result;
}
}
WSABUF write_buffer;
write_buffer.buf = buf->data();
write_buffer.len = buf_len;
DWORD flags = 0;
DWORD num;
int rv;
if (send_ecn_ != ECN_NOT_ECT) {
WSABUF control_buffer;
char raw_control_buffer[WSA_CMSG_SPACE(sizeof(int))];
control_buffer.buf = raw_control_buffer;
control_buffer.len = sizeof(raw_control_buffer);
WSAMSG message;
bool temp_address = !remote_address_.get();
if (temp_address) {
remote_address_ = std::make_unique<IPEndPoint>(*address);
}
PopulateWSAMSG(message, storage, &write_buffer, control_buffer, true);
if (temp_address) {
remote_address_.reset();
}
rv = wsa_send_msg_(socket_, &message, flags, &num,
&core_->write_overlapped_, nullptr);
} else {
rv = WSASendTo(socket_, &write_buffer, 1, &num, flags, addr,
storage.addr_len, &core_->write_overlapped_, nullptr);
}
if (rv == 0) {
if (ResetEventIfSignaled(core_->write_overlapped_.hEvent)) {
int result = num;
LogWrite(result, buf->data(), address);
return result;
}
} else {
int os_error = WSAGetLastError();
if (os_error != WSA_IO_PENDING) {
int result = MapSystemError(os_error);
LogWrite(result, nullptr, nullptr);
return result;
}
}
core_->WatchForWrite();
core_->write_iobuffer_ = buf;
return ERR_IO_PENDING;
}
int UDPSocketWin::InternalRecvFromNonBlocking(IOBuffer* buf,
int buf_len,
IPEndPoint* address) {
DCHECK(!read_iobuffer_ || read_iobuffer_.get() == buf);
SockaddrStorage storage;
storage.addr_len = sizeof(storage.addr_storage);
CHECK_NE(INVALID_SOCKET, socket_);
int rv;
if (report_ecn_) {
WSABUF read_buffer;
read_buffer.buf = buf->data();
read_buffer.len = buf_len;
WSABUF control_buffer;
char raw_control_buffer[WSA_CMSG_SPACE(sizeof(INT))];
control_buffer.buf = raw_control_buffer;
control_buffer.len = sizeof(raw_control_buffer);
WSAMSG message;
DWORD bytes_read;
PopulateWSAMSG(message, storage, &read_buffer, control_buffer, false);
rv = wsa_recv_msg_(socket_, &message, &bytes_read, nullptr, nullptr);
SetLastTosFromWSAMSG(message);
if (rv == 0) {
rv = bytes_read; // WSARecvMsg() returns zero on delivery, but recvfrom
// returns the number of bytes received.
}
} else {
rv = recvfrom(socket_, buf->data(), buf_len, 0, storage.addr,
&storage.addr_len);
}
if (rv == SOCKET_ERROR) {
int os_error = WSAGetLastError();
if (os_error == WSAEWOULDBLOCK) {
read_iobuffer_ = buf;
read_iobuffer_len_ = buf_len;
WatchForReadWrite();
return ERR_IO_PENDING;
}
rv = MapSystemError(os_error);
LogRead(rv, nullptr, nullptr);
return rv;
}
IPEndPoint address_storage;
IPEndPoint* address_to_log = nullptr;
if (rv >= 0) {
if (address_storage.FromSockAddr(storage.addr, storage.addr_len)) {
if (address) {
*address = address_storage;
}
address_to_log = &address_storage;
} else {
rv = ERR_ADDRESS_INVALID;
}
}
LogRead(rv, buf->data(), address_to_log);
return rv;
}
int UDPSocketWin::InternalSendToNonBlocking(IOBuffer* buf,
int buf_len,
const IPEndPoint* address) {
DCHECK(!write_iobuffer_ || write_iobuffer_.get() == buf);
SockaddrStorage storage;
struct sockaddr* addr = storage.addr;
// Convert address.
if (address) {
if (!address->ToSockAddr(addr, &storage.addr_len)) {
int result = ERR_ADDRESS_INVALID;
LogWrite(result, nullptr, nullptr);
return result;
}
} else {
addr = nullptr;
storage.addr_len = 0;
}
int rv;
if (send_ecn_ != ECN_NOT_ECT) {
char raw_control_buffer[WSA_CMSG_SPACE(sizeof(INT))];
WSABUF write_buffer;
write_buffer.buf = buf->data();
write_buffer.len = buf_len;
WSABUF control_buffer;
control_buffer.buf = raw_control_buffer;
control_buffer.len = sizeof(raw_control_buffer);
WSAMSG message;
DWORD bytes_read;
PopulateWSAMSG(message, storage, &write_buffer, control_buffer, true);
rv = wsa_send_msg_(socket_, &message, 0, &bytes_read, nullptr, nullptr);
if (rv == 0) {
rv = bytes_read;
}
} else {
rv = sendto(socket_, buf->data(), buf_len, 0, addr, storage.addr_len);
}
if (rv == SOCKET_ERROR) {
int os_error = WSAGetLastError();
if (os_error == WSAEWOULDBLOCK) {
write_iobuffer_ = buf;
write_iobuffer_len_ = buf_len;
WatchForReadWrite();
return ERR_IO_PENDING;
}
rv = MapSystemError(os_error);
LogWrite(rv, nullptr, nullptr);
return rv;
}
LogWrite(rv, buf->data(), address);
return rv;
}
int UDPSocketWin::SetMulticastOptions() {
if (!(socket_options_ & SOCKET_OPTION_MULTICAST_LOOP)) {
DWORD loop = 0;
int protocol_level = addr_family_ == AF_INET ? IPPROTO_IP : IPPROTO_IPV6;
int option =
addr_family_ == AF_INET ? IP_MULTICAST_LOOP : IPV6_MULTICAST_LOOP;
int rv = setsockopt(socket_, protocol_level, option,
reinterpret_cast<const char*>(&loop), sizeof(loop));
if (rv < 0) {
return MapSystemError(WSAGetLastError());
}
}
if (multicast_time_to_live_ != 1) {
DWORD hops = multicast_time_to_live_;
int protocol_level = addr_family_ == AF_INET ? IPPROTO_IP : IPPROTO_IPV6;
int option =
addr_family_ == AF_INET ? IP_MULTICAST_TTL : IPV6_MULTICAST_HOPS;
int rv = setsockopt(socket_, protocol_level, option,
reinterpret_cast<const char*>(&hops), sizeof(hops));
if (rv < 0) {
return MapSystemError(WSAGetLastError());
}
}
if (multicast_interface_ != 0) {
switch (addr_family_) {
case AF_INET: {
in_addr address;
address.s_addr = htonl(multicast_interface_);
int rv = setsockopt(socket_, IPPROTO_IP, IP_MULTICAST_IF,
reinterpret_cast<const char*>(&address),
sizeof(address));
if (rv) {
return MapSystemError(WSAGetLastError());
}
break;
}
case AF_INET6: {
uint32_t interface_index = multicast_interface_;
int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_MULTICAST_IF,
reinterpret_cast<const char*>(&interface_index),
sizeof(interface_index));
if (rv) {
return MapSystemError(WSAGetLastError());
}
break;
}
default:
NOTREACHED_IN_MIGRATION() << "Invalid address family";
return ERR_ADDRESS_INVALID;
}
}
return OK;
}
int UDPSocketWin::DoBind(const IPEndPoint& address) {
SockaddrStorage storage;
if (!address.ToSockAddr(storage.addr, &storage.addr_len)) {
return ERR_ADDRESS_INVALID;
}
int rv = bind(socket_, storage.addr, storage.addr_len);
if (rv == 0) {
return OK;
}
int last_error = WSAGetLastError();
// Map some codes that are special to bind() separately.
// * WSAEACCES: If a port is already bound to a socket, WSAEACCES may be
// returned instead of WSAEADDRINUSE, depending on whether the socket
// option SO_REUSEADDR or SO_EXCLUSIVEADDRUSE is set and whether the
// conflicting socket is owned by a different user account. See the MSDN
// page "Using SO_REUSEADDR and SO_EXCLUSIVEADDRUSE" for the gory details.
if (last_error == WSAEACCES || last_error == WSAEADDRNOTAVAIL) {
return ERR_ADDRESS_IN_USE;
}
return MapSystemError(last_error);
}
QwaveApi* UDPSocketWin::GetQwaveApi() const {
return QwaveApi::GetDefault();
}
int UDPSocketWin::JoinGroup(const IPAddress& group_address) const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (!is_connected()) {
return ERR_SOCKET_NOT_CONNECTED;
}
switch (group_address.size()) {
case IPAddress::kIPv4AddressSize: {
if (addr_family_ != AF_INET) {
return ERR_ADDRESS_INVALID;
}
ip_mreq mreq;
mreq.imr_interface.s_addr = htonl(multicast_interface_);
memcpy(&mreq.imr_multiaddr, group_address.bytes().data(),
IPAddress::kIPv4AddressSize);
int rv = setsockopt(socket_, IPPROTO_IP, IP_ADD_MEMBERSHIP,
reinterpret_cast<const char*>(&mreq), sizeof(mreq));
if (rv) {
return MapSystemError(WSAGetLastError());
}
return OK;
}
case IPAddress::kIPv6AddressSize: {
if (addr_family_ != AF_INET6) {
return ERR_ADDRESS_INVALID;
}
ipv6_mreq mreq;
mreq.ipv6mr_interface = multicast_interface_;
memcpy(&mreq.ipv6mr_multiaddr, group_address.bytes().data(),
IPAddress::kIPv6AddressSize);
int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP,
reinterpret_cast<const char*>(&mreq), sizeof(mreq));
if (rv) {
return MapSystemError(WSAGetLastError());
}
return OK;
}
default:
NOTREACHED_IN_MIGRATION() << "Invalid address family";
return ERR_ADDRESS_INVALID;
}
}
int UDPSocketWin::LeaveGroup(const IPAddress& group_address) const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (!is_connected()) {
return ERR_SOCKET_NOT_CONNECTED;
}
switch (group_address.size()) {
case IPAddress::kIPv4AddressSize: {
if (addr_family_ != AF_INET) {
return ERR_ADDRESS_INVALID;
}
ip_mreq mreq;
mreq.imr_interface.s_addr = htonl(multicast_interface_);
memcpy(&mreq.imr_multiaddr, group_address.bytes().data(),
IPAddress::kIPv4AddressSize);
int rv = setsockopt(socket_, IPPROTO_IP, IP_DROP_MEMBERSHIP,
reinterpret_cast<const char*>(&mreq), sizeof(mreq));
if (rv) {
return MapSystemError(WSAGetLastError());
}
return OK;
}
case IPAddress::kIPv6AddressSize: {
if (addr_family_ != AF_INET6) {
return ERR_ADDRESS_INVALID;
}
ipv6_mreq mreq;
mreq.ipv6mr_interface = multicast_interface_;
memcpy(&mreq.ipv6mr_multiaddr, group_address.bytes().data(),
IPAddress::kIPv6AddressSize);
int rv = setsockopt(socket_, IPPROTO_IPV6, IP_DROP_MEMBERSHIP,
reinterpret_cast<const char*>(&mreq), sizeof(mreq));
if (rv) {
return MapSystemError(WSAGetLastError());
}
return OK;
}
default:
NOTREACHED_IN_MIGRATION() << "Invalid address family";
return ERR_ADDRESS_INVALID;
}
}
int UDPSocketWin::SetMulticastInterface(uint32_t interface_index) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_connected()) {
return ERR_SOCKET_IS_CONNECTED;
}
multicast_interface_ = interface_index;
return OK;
}
int UDPSocketWin::SetMulticastTimeToLive(int time_to_live) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_connected()) {
return ERR_SOCKET_IS_CONNECTED;
}
if (time_to_live < 0 || time_to_live > 255) {
return ERR_INVALID_ARGUMENT;
}
multicast_time_to_live_ = time_to_live;
return OK;
}
int UDPSocketWin::SetMulticastLoopbackMode(bool loopback) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_connected()) {
return ERR_SOCKET_IS_CONNECTED;
}
if (loopback) {
socket_options_ |= SOCKET_OPTION_MULTICAST_LOOP;
} else {
socket_options_ &= ~SOCKET_OPTION_MULTICAST_LOOP;
}
return OK;
}
QOS_TRAFFIC_TYPE DscpToTrafficType(DiffServCodePoint dscp) {
QOS_TRAFFIC_TYPE traffic_type = QOSTrafficTypeBestEffort;
switch (dscp) {
case DSCP_CS0:
traffic_type = QOSTrafficTypeBestEffort;
break;
case DSCP_CS1:
traffic_type = QOSTrafficTypeBackground;
break;
case DSCP_AF11:
case DSCP_AF12:
case DSCP_AF13:
case DSCP_CS2:
case DSCP_AF21:
case DSCP_AF22:
case DSCP_AF23:
case DSCP_CS3:
case DSCP_AF31:
case DSCP_AF32:
case DSCP_AF33:
case DSCP_CS4:
traffic_type = QOSTrafficTypeExcellentEffort;
break;
case DSCP_AF41:
case DSCP_AF42:
case DSCP_AF43:
case DSCP_CS5:
traffic_type = QOSTrafficTypeAudioVideo;
break;
case DSCP_EF:
case DSCP_CS6:
traffic_type = QOSTrafficTypeVoice;
break;
case DSCP_CS7:
traffic_type = QOSTrafficTypeControl;
break;
case DSCP_NO_CHANGE:
NOTREACHED_IN_MIGRATION();
break;
}
return traffic_type;
}
int UDPSocketWin::SetDiffServCodePoint(DiffServCodePoint dscp) {
return SetTos(dscp, ECN_NO_CHANGE);
}
int UDPSocketWin::SetTos(DiffServCodePoint dscp, EcnCodePoint ecn) {
if (!is_connected()) {
return ERR_SOCKET_NOT_CONNECTED;
}
if (dscp != DSCP_NO_CHANGE) {
QwaveApi* api = GetQwaveApi();
if (!api->qwave_supported()) {
return ERR_NOT_IMPLEMENTED;
}
if (!dscp_manager_) {
dscp_manager_ = std::make_unique<DscpManager>(api, socket_);
}
dscp_manager_->Set(dscp);
if (remote_address_) {
int rv = dscp_manager_->PrepareForSend(*remote_address_.get());
if (rv != OK) {
return rv;
}
}
}
if (ecn == ECN_NO_CHANGE) {
return OK;
}
if (wsa_send_msg_ == nullptr) {
wsa_send_msg_ = GetSendMsgPointer();
}
send_ecn_ = ecn;
return OK;
}
int UDPSocketWin::SetIPv6Only(bool ipv6_only) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_connected()) {
return ERR_SOCKET_IS_CONNECTED;
}
return net::SetIPv6Only(socket_, ipv6_only);
}
void UDPSocketWin::DetachFromThread() {
DETACH_FROM_THREAD(thread_checker_);
}
void UDPSocketWin::UseNonBlockingIO() {
DCHECK(!core_);
use_non_blocking_io_ = true;
}
void UDPSocketWin::ApplySocketTag(const SocketTag& tag) {
// Windows does not support any specific SocketTags so fail if any
// non-default tag is applied.
CHECK(tag == SocketTag());
}
DscpManager::DscpManager(QwaveApi* api, SOCKET socket)
: api_(api), socket_(socket) {
RequestHandle();
}
DscpManager::~DscpManager() {
if (!qos_handle_) {
return;
}
if (flow_id_ != 0) {
api_->RemoveSocketFromFlow(qos_handle_, NULL, flow_id_, 0);
}
api_->CloseHandle(qos_handle_);
}
void DscpManager::Set(DiffServCodePoint dscp) {
if (dscp == DSCP_NO_CHANGE || dscp == dscp_value_) {
return;
}
dscp_value_ = dscp;
// TODO(zstein): We could reuse the flow when the value changes
// by calling QOSSetFlow with the new traffic type and dscp value.
if (flow_id_ != 0 && qos_handle_) {
api_->RemoveSocketFromFlow(qos_handle_, NULL, flow_id_, 0);
configured_.clear();
flow_id_ = 0;
}
}
int DscpManager::PrepareForSend(const IPEndPoint& remote_address) {
if (dscp_value_ == DSCP_NO_CHANGE) {
// No DSCP value has been set.
return OK;
}
if (!api_->qwave_supported()) {
return ERR_NOT_IMPLEMENTED;
}
if (!qos_handle_) {
return ERR_INVALID_HANDLE; // The closest net error to try again later.
}
if (configured_.find(remote_address) != configured_.end()) {
return OK;
}
SockaddrStorage storage;
if (!remote_address.ToSockAddr(storage.addr, &storage.addr_len)) {
return ERR_ADDRESS_INVALID;
}
// We won't try this address again if we get an error.
configured_.emplace(remote_address);
// We don't need to call SetFlow if we already have a qos flow.
bool new_flow = flow_id_ == 0;
const QOS_TRAFFIC_TYPE traffic_type = DscpToTrafficType(dscp_value_);
if (!api_->AddSocketToFlow(qos_handle_, socket_, storage.addr, traffic_type,
QOS_NON_ADAPTIVE_FLOW, &flow_id_)) {
DWORD err = ::GetLastError();
if (err == ERROR_DEVICE_REINITIALIZATION_NEEDED) {
// Reset. PrepareForSend is called for every packet. Once RequestHandle
// completes asynchronously the next PrepareForSend call will
// re-register the address with the new QoS Handle. In the meantime,
// sends will continue without DSCP.
RequestHandle();
configured_.clear();
flow_id_ = 0;
return ERR_INVALID_HANDLE;
}
return MapSystemError(err);
}
if (new_flow) {
DWORD buf = dscp_value_;
// This requires admin rights, and may fail, if so we ignore it
// as AddSocketToFlow should still do *approximately* the right thing.
api_->SetFlow(qos_handle_, flow_id_, QOSSetOutgoingDSCPValue, sizeof(buf),
&buf, 0, nullptr);
}
return OK;
}
void DscpManager::RequestHandle() {
if (handle_is_initializing_) {
return;
}
if (qos_handle_) {
api_->CloseHandle(qos_handle_);
qos_handle_ = nullptr;
}
handle_is_initializing_ = true;
base::ThreadPool::PostTaskAndReplyWithResult(
FROM_HERE, {base::MayBlock()},
base::BindOnce(&DscpManager::DoCreateHandle, api_),
base::BindOnce(&DscpManager::OnHandleCreated, api_,
weak_ptr_factory_.GetWeakPtr()));
}
HANDLE DscpManager::DoCreateHandle(QwaveApi* api) {
QOS_VERSION version;
version.MajorVersion = 1;
version.MinorVersion = 0;
HANDLE handle = nullptr;
// No access to net_log_ so swallow any errors here.
api->CreateHandle(&version, &handle);
return handle;
}
void DscpManager::OnHandleCreated(QwaveApi* api,
base::WeakPtr<DscpManager> dscp_manager,
HANDLE handle) {
if (!handle) {
api->OnFatalError();
}
if (!dscp_manager) {
api->CloseHandle(handle);
return;
}
DCHECK(dscp_manager->handle_is_initializing_);
DCHECK(!dscp_manager->qos_handle_);
dscp_manager->qos_handle_ = handle;
dscp_manager->handle_is_initializing_ = false;
}
} // namespace net