// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef PPAPI_SHARED_IMPL_PROXY_LOCK_H_
#define PPAPI_SHARED_IMPL_PROXY_LOCK_H_
#include <memory>
#include <utility>
#include "base/auto_reset.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/threading/thread_checker.h"
#include "ppapi/shared_impl/ppapi_shared_export.h"
namespace base {
class Lock;
}
namespace content {
class HostGlobals;
}
namespace ppapi {
// This is the one lock to rule them all for the ppapi proxy. All PPB interface
// functions that need to be synchronized should lock this lock on entry. This
// is normally accomplished by using an appropriate Enter RAII object at the
// beginning of each thunk function.
//
// TODO(dmichael): If this turns out to be too slow and contentious, we'll want
// to use multiple locks. E.g., one for the var tracker, one for the resource
// tracker, etc.
class PPAPI_SHARED_EXPORT ProxyLock {
public:
ProxyLock() = delete;
ProxyLock(const ProxyLock&) = delete;
ProxyLock& operator=(const ProxyLock&) = delete;
// Return the global ProxyLock. Normally, you should not access this
// directly but instead use ProxyAutoLock or ProxyAutoUnlock. But sometimes
// you need access to the ProxyLock, for example to create a condition
// variable.
static base::Lock* Get();
// Acquire the proxy lock. If it is currently held by another thread, block
// until it is available. If the lock has not been set using the 'Set' method,
// this operation does nothing. That is the normal case for the host side;
// see PluginResourceTracker for where the lock gets set for the out-of-
// process plugin case.
static void Acquire();
// Relinquish the proxy lock. If the lock has not been set, this does nothing.
static void Release();
// Assert that the lock is owned by the current thread (in the plugin
// process). Does nothing when running in-process (or in the host process).
static void AssertAcquired();
static void AssertAcquiredDebugOnly() {
#ifndef NDEBUG
AssertAcquired();
#endif
}
// We have some unit tests where one thread pretends to be the host and one
// pretends to be the plugin. This allows the lock to do nothing on only one
// thread to support these tests. See TwoWayTest for more information.
class PPAPI_SHARED_EXPORT LockingDisablerForTest {
public:
LockingDisablerForTest();
~LockingDisablerForTest() = default;
private:
const base::AutoReset<bool> resetter_;
};
private:
friend class content::HostGlobals;
// On the host side, we do not lock. This must be called at most once at
// startup, before other threads that may access the ProxyLock have had a
// chance to run.
static void DisableLocking();
};
// A simple RAII class for locking the PPAPI proxy lock on entry and releasing
// on exit. This is for simple interfaces that don't use the 'thunk' system,
// such as PPB_Var and PPB_Core.
class ProxyAutoLock {
public:
ProxyAutoLock() { ProxyLock::Acquire(); }
ProxyAutoLock(const ProxyAutoLock&) = delete;
ProxyAutoLock& operator=(const ProxyAutoLock&) = delete;
~ProxyAutoLock() { ProxyLock::Release(); }
};
// The inverse of the above; unlock on construction, lock on destruction. This
// is useful for calling out to the plugin, when we need to unlock but ensure
// that we re-acquire the lock when the plugin is returns or raises an
// exception.
class ProxyAutoUnlock {
public:
ProxyAutoUnlock() { ProxyLock::Release(); }
ProxyAutoUnlock(const ProxyAutoUnlock&) = delete;
ProxyAutoUnlock& operator=(const ProxyAutoUnlock&) = delete;
~ProxyAutoUnlock() { ProxyLock::Acquire(); }
};
// A set of function template overloads for invoking a function pointer while
// the ProxyLock is unlocked. This assumes that the luck is held.
// CallWhileUnlocked unlocks the ProxyLock just before invoking the given
// function. The lock is immediately re-acquired when the invoked function
// function returns. CallWhileUnlocked returns whatever the given function
// returned.
//
// Example usage:
// *result = CallWhileUnlocked(ppp_input_event_impl_->HandleInputEvent,
// instance,
// resource->pp_resource());
template <class ReturnType>
ReturnType CallWhileUnlocked(ReturnType (*function)()) {
ProxyAutoUnlock unlock;
return function();
}
// Note we use 2 types for the params, even though for the most part we expect
// A1 to match P1. We let the compiler determine if P1 can convert safely to
// A1. This allows callers to avoid having to do things like
// const_cast to add const.
template <class ReturnType, class A1, class P1>
ReturnType CallWhileUnlocked(ReturnType (*function)(A1), const P1& p1) {
ProxyAutoUnlock unlock;
return function(p1);
}
template <class ReturnType, class A1, class A2, class P1, class P2>
ReturnType CallWhileUnlocked(ReturnType (*function)(A1, A2),
const P1& p1,
const P2& p2) {
ProxyAutoUnlock unlock;
return function(p1, p2);
}
template <class ReturnType, class A1, class A2, class A3, class P1, class P2,
class P3>
ReturnType CallWhileUnlocked(ReturnType (*function)(A1, A2, A3),
const P1& p1,
const P2& p2,
const P3& p3) {
ProxyAutoUnlock unlock;
return function(p1, p2, p3);
}
template <class ReturnType, class A1, class A2, class A3, class A4, class P1,
class P2, class P3, class P4>
ReturnType CallWhileUnlocked(ReturnType (*function)(A1, A2, A3, A4),
const P1& p1,
const P2& p2,
const P3& p3,
const P4& p4) {
ProxyAutoUnlock unlock;
return function(p1, p2, p3, p4);
}
template <class ReturnType, class A1, class A2, class A3, class A4, class A5,
class P1, class P2, class P3, class P4, class P5>
ReturnType CallWhileUnlocked(ReturnType (*function)(A1, A2, A3, A4, A5),
const P1& p1,
const P2& p2,
const P3& p3,
const P4& p4,
const P5& p5) {
ProxyAutoUnlock unlock;
return function(p1, p2, p3, p4, p5);
}
void PPAPI_SHARED_EXPORT CallWhileUnlocked(base::OnceClosure closure);
namespace internal {
template <typename RunType>
class RunWhileLockedHelper;
// A helper class to ensure that a callback is always run and destroyed while
// the ProxyLock is held. A callback that is bound with ref-counted Var or
// Resource parameters may invoke methods on the VarTracker or the
// ResourceTracker in its destructor, and these require the ProxyLock.
template <>
class RunWhileLockedHelper<void()> {
public:
typedef base::OnceCallback<void()> CallbackType;
explicit RunWhileLockedHelper(CallbackType callback)
: callback_(std::move(callback)) {
// CallWhileLocked and destruction might happen on a different thread from
// creation.
thread_checker_.DetachFromThread();
}
static void CallWhileLocked(std::unique_ptr<RunWhileLockedHelper> ptr) {
// Bind thread_checker_ to this thread so we can check in the destructor.
// *If* the callback gets invoked, it's important that RunWhileLockedHelper
// is destroyed on the same thread (see the comments in the destructor).
DCHECK(ptr->thread_checker_.CalledOnValidThread());
ProxyAutoLock lock;
// Relax the cross-thread access restriction to non-thread-safe RefCount.
// |lock| above protects the access to Resource instances.
base::ScopedAllowCrossThreadRefCountAccess
allow_cross_thread_ref_count_access;
{
// Use a scope and local Callback to ensure that the callback is cleared
// before the lock is released, even in the unlikely event that Run()
// throws an exception.
CallbackType temp_callback = std::move(ptr->callback_);
std::move(temp_callback).Run();
}
}
RunWhileLockedHelper(const RunWhileLockedHelper&) = delete;
RunWhileLockedHelper& operator=(const RunWhileLockedHelper&) = delete;
~RunWhileLockedHelper() {
// Check that the Callback is destroyed on the same thread as where
// CallWhileLocked happened if CallWhileLocked happened. If we weren't
// invoked, thread_checked_ isn't bound to a thread.
DCHECK(thread_checker_.CalledOnValidThread());
// Here we read callback_ without the lock. This is why the callback must be
// destroyed on the same thread where it runs. Note that callback_ will be
// NULL if it has already been run via CallWhileLocked. In this case,
// there's no need to acquire the lock, because we don't touch any shared
// data.
if (callback_) {
// If the callback was *not* run, we're in a case where the task queue
// we got pushed to has been destroyed (e.g., the thread is shut down and
// its MessageLoop destroyed before all tasks have run.)
//
// We still need to have the lock when we destroy the callback:
// - Because Resource and Var inherit RefCounted (not
// ThreadSafeRefCounted).
// - Because if the callback owns the last ref to a Resource, it will
// call the ResourceTracker and also the Resource's destructor, which
// both require the ProxyLock.
ProxyAutoLock lock;
// Relax the cross-thread access restriction to non-thread-safe RefCount.
// |lock| above protects the access to Resource instances.
base::ScopedAllowCrossThreadRefCountAccess
allow_cross_thread_ref_count_access;
callback_.Reset();
}
}
private:
CallbackType callback_;
// Used to ensure that the Callback is run and deleted on the same thread.
base::ThreadChecker thread_checker_;
};
template <typename P1>
class RunWhileLockedHelper<void(P1)> {
public:
typedef base::OnceCallback<void(P1)> CallbackType;
explicit RunWhileLockedHelper(CallbackType callback)
: callback_(std::move(callback)) {
thread_checker_.DetachFromThread();
}
static void CallWhileLocked(std::unique_ptr<RunWhileLockedHelper> ptr,
P1 p1) {
DCHECK(ptr->thread_checker_.CalledOnValidThread());
ProxyAutoLock lock;
// Relax the cross-thread access restriction to non-thread-safe RefCount.
// |lock| above protects the access to Resource instances.
base::ScopedAllowCrossThreadRefCountAccess
allow_cross_thread_ref_count_access;
{
CallbackType temp_callback = std::move(ptr->callback_);
std::move(temp_callback).Run(p1);
}
}
RunWhileLockedHelper(const RunWhileLockedHelper&) = delete;
RunWhileLockedHelper& operator=(const RunWhileLockedHelper&) = delete;
~RunWhileLockedHelper() {
DCHECK(thread_checker_.CalledOnValidThread());
if (callback_) {
ProxyAutoLock lock;
// Relax the cross-thread access restriction to non-thread-safe RefCount.
// |lock| above protects the access to Resource instances.
base::ScopedAllowCrossThreadRefCountAccess
allow_cross_thread_ref_count_access;
callback_.Reset();
}
}
private:
CallbackType callback_;
base::ThreadChecker thread_checker_;
};
template <typename P1, typename P2>
class RunWhileLockedHelper<void(P1, P2)> {
public:
typedef base::OnceCallback<void(P1, P2)> CallbackType;
explicit RunWhileLockedHelper(CallbackType callback)
: callback_(std::move(callback)) {
thread_checker_.DetachFromThread();
}
static void CallWhileLocked(std::unique_ptr<RunWhileLockedHelper> ptr,
P1 p1,
P2 p2) {
DCHECK(ptr->thread_checker_.CalledOnValidThread());
ProxyAutoLock lock;
// Relax the cross-thread access restriction to non-thread-safe RefCount.
// |lock| above protects the access to Resource instances.
base::ScopedAllowCrossThreadRefCountAccess
allow_cross_thread_ref_count_access;
{
CallbackType temp_callback = std::move(ptr->callback_);
std::move(temp_callback).Run(p1, p2);
}
}
RunWhileLockedHelper(const RunWhileLockedHelper&) = delete;
RunWhileLockedHelper& operator=(const RunWhileLockedHelper&) = delete;
~RunWhileLockedHelper() {
DCHECK(thread_checker_.CalledOnValidThread());
if (callback_) {
ProxyAutoLock lock;
// Relax the cross-thread access restriction to non-thread-safe RefCount.
// |lock| above protects the access to Resource instances.
base::ScopedAllowCrossThreadRefCountAccess
allow_cross_thread_ref_count_access;
callback_.Reset();
}
}
private:
CallbackType callback_;
base::ThreadChecker thread_checker_;
};
template <typename P1, typename P2, typename P3>
class RunWhileLockedHelper<void(P1, P2, P3)> {
public:
typedef base::OnceCallback<void(P1, P2, P3)> CallbackType;
explicit RunWhileLockedHelper(CallbackType callback)
: callback_(std::move(callback)) {
thread_checker_.DetachFromThread();
}
static void CallWhileLocked(std::unique_ptr<RunWhileLockedHelper> ptr,
P1 p1,
P2 p2,
P3 p3) {
DCHECK(ptr->thread_checker_.CalledOnValidThread());
ProxyAutoLock lock;
// Relax the cross-thread access restriction to non-thread-safe RefCount.
// |lock| above protects the access to Resource instances.
base::ScopedAllowCrossThreadRefCountAccess
allow_cross_thread_ref_count_access;
{
CallbackType temp_callback = std::move(ptr->callback_);
std::move(temp_callback).Run(p1, p2, p3);
}
}
RunWhileLockedHelper(const RunWhileLockedHelper&) = delete;
RunWhileLockedHelper& operator=(const RunWhileLockedHelper&) = delete;
~RunWhileLockedHelper() {
DCHECK(thread_checker_.CalledOnValidThread());
if (callback_) {
ProxyAutoLock lock;
// Relax the cross-thread access restriction to non-thread-safe RefCount.
// |lock| above protects the access to Resource instances.
base::ScopedAllowCrossThreadRefCountAccess
allow_cross_thread_ref_count_access;
callback_.Reset();
}
}
private:
CallbackType callback_;
base::ThreadChecker thread_checker_;
};
} // namespace internal
// RunWhileLocked wraps the given Callback in a new Callback that, when invoked:
// 1) Locks the ProxyLock.
// 2) Runs the original Callback (forwarding arguments, if any).
// 3) Clears the original Callback (while the lock is held).
// 4) Unlocks the ProxyLock.
// Note that it's important that the callback is cleared in step (3), in case
// clearing the Callback causes a destructor (e.g., for a Resource) to run,
// which should hold the ProxyLock to avoid data races.
//
// This is for cases where you want to run a task or store a Callback, but you
// want to ensure that the ProxyLock is acquired for the duration of the task
// that the Callback runs.
// EXAMPLE USAGE:
// GetMainThreadMessageLoop()->PostDelayedTask(
// FROM_HERE,
// RunWhileLocked(
// base::BindOnce(&CallbackWrapper, std::move(callback), result)),
// delay_in_ms);
//
// In normal usage like the above, this all should "just work". However, if you
// do something unusual, you may get a runtime crash due to deadlock. Here are
// the ways that the returned Callback must be used to avoid a deadlock:
// (1) copied to another Callback. After that, the original callback can be
// destroyed with or without the proxy lock acquired, while the newly assigned
// callback has to conform to these same restrictions. Or
// (2) run without proxy lock acquired (e.g., being posted to a MessageLoop
// and run there). The callback must be destroyed on the same thread where it
// was run (but can be destroyed with or without the proxy lock acquired). Or
// (3) destroyed without the proxy lock acquired.
template <class FunctionType>
inline base::OnceCallback<FunctionType> RunWhileLocked(
base::OnceCallback<FunctionType> callback) {
// NOTE: the reason we use "scoped_ptr" here instead of letting the callback
// own it via base::Owned is kind of subtle. Imagine for the moment that we
// call RunWhileLocked without the ProxyLock:
// {
// base::OnceCallback<void ()> local_callback = base::BinOnced(&Foo);
// some_task_runner.PostTask(FROM_HERE,
// RunWhileLocked(std::move(local_callback)));
// }
// In this case, since we don't have a lock synchronizing us, it's possible
// for the callback to run on the other thread before we return and destroy
// |local_callback|. The important thing here is that even though the other
// thread gets a copy of the callback, the internal "BindState" of the
// callback is refcounted and shared between all copies of the callback. So
// in that case, if we used base::Owned, we might delete RunWhileLockedHelper
// on this thread, which will violate the RunWhileLockedHelper's assumption
// that it is destroyed on the same thread where it is run.
std::unique_ptr<internal::RunWhileLockedHelper<FunctionType>> helper(
new internal::RunWhileLockedHelper<FunctionType>(std::move(callback)));
return base::BindOnce(
&internal::RunWhileLockedHelper<FunctionType>::CallWhileLocked,
std::move(helper));
}
} // namespace ppapi
#endif // PPAPI_SHARED_IMPL_PROXY_LOCK_H_