// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
// For information about interceptions as a whole see
// http://dev.chromium.org/developers/design-documents/sandbox .
#include "sandbox/win/src/interception.h"
#include <stddef.h>
#include <stdint.h>
#include <set>
#include <string>
#include "base/bits.h"
#include "base/check_op.h"
#include "base/containers/heap_array.h"
#include "base/notreached.h"
#include "base/rand_util.h"
#include "base/scoped_native_library.h"
#include "base/win/pe_image.h"
#include "sandbox/win/src/interception_internal.h"
#include "sandbox/win/src/interceptors.h"
#include "sandbox/win/src/internal_types.h"
#include "sandbox/win/src/sandbox.h"
#include "sandbox/win/src/service_resolver.h"
#include "sandbox/win/src/target_interceptions.h"
#include "sandbox/win/src/target_process.h"
#include "sandbox/win/src/win_utils.h"
namespace sandbox {
namespace {
// Standard allocation granularity and page size for Windows.
const size_t kAllocGranularity = 65536;
const size_t kPageSize = 4096;
// Rounds up the size of a given buffer, considering alignment (padding).
// value is the current size of the buffer, and alignment is specified in
// bytes.
inline size_t RoundUpToMultiple(size_t value, size_t alignment) {
return ((value + alignment - 1) / alignment) * alignment;
}
} // namespace
namespace internal {
// Find a random offset within 64k and aligned to ceil(log2(size)).
size_t GetGranularAlignedRandomOffset(size_t size) {
CHECK_LE(size, kAllocGranularity);
unsigned int offset = static_cast<unsigned int>(
base::RandInt(0, static_cast<int>(kAllocGranularity - size)));
// Find an alignment between 64 and the page size (4096).
size_t align_size = kPageSize;
for (size_t new_size = align_size / 2; new_size >= size; new_size /= 2) {
align_size = new_size;
}
return offset & ~(align_size - 1);
}
} // namespace internal
SANDBOX_INTERCEPT SharedMemory* g_interceptions;
// Table of the unpatched functions that we intercept. Mapped from the parent.
SANDBOX_INTERCEPT OriginalFunctions g_originals = {nullptr};
// Magic constant that identifies that this function is not to be patched.
const char kUnloadDLLDummyFunction[] = "@";
InterceptionManager::InterceptionData::InterceptionData() {}
InterceptionManager::InterceptionData::InterceptionData(
const InterceptionData& other) = default;
InterceptionManager::InterceptionData::~InterceptionData() {}
InterceptionManager::InterceptionManager(TargetProcess& child_process)
: child_(child_process), names_used_(false) {}
InterceptionManager::~InterceptionManager() {}
bool InterceptionManager::AddToPatchedFunctions(
const wchar_t* dll_name,
const char* function_name,
InterceptionType interception_type,
const void* replacement_code_address,
InterceptorId id) {
InterceptionData function;
function.type = interception_type;
function.id = id;
function.dll = dll_name;
function.function = function_name;
function.interceptor_address = replacement_code_address;
interceptions_.push_back(function);
return true;
}
bool InterceptionManager::AddToPatchedFunctions(
const wchar_t* dll_name,
const char* function_name,
InterceptionType interception_type,
const char* replacement_function_name,
InterceptorId id) {
InterceptionData function;
function.type = interception_type;
function.id = id;
function.dll = dll_name;
function.function = function_name;
function.interceptor = replacement_function_name;
function.interceptor_address = nullptr;
interceptions_.push_back(function);
names_used_ = true;
return true;
}
bool InterceptionManager::AddToUnloadModules(const wchar_t* dll_name) {
InterceptionData module_to_unload;
module_to_unload.type = INTERCEPTION_UNLOAD_MODULE;
module_to_unload.dll = dll_name;
// The next two are dummy values that make the structures regular, instead
// of having special cases. They should not be used.
module_to_unload.function = kUnloadDLLDummyFunction;
module_to_unload.interceptor_address = reinterpret_cast<void*>(1);
interceptions_.push_back(module_to_unload);
return true;
}
ResultCode InterceptionManager::InitializeInterceptions() {
if (interceptions_.empty())
return SBOX_ALL_OK; // Nothing to do here
auto local_buffer = base::HeapArray<uint8_t>::Uninit(GetBufferSize());
if (!SetupConfigBuffer(local_buffer.data(), local_buffer.size())) {
return SBOX_ERROR_CANNOT_SETUP_INTERCEPTION_CONFIG_BUFFER;
}
void* remote_buffer;
if (!CopyToChildMemory(child_->Process(), local_buffer, &remote_buffer)) {
return SBOX_ERROR_CANNOT_COPY_DATA_TO_CHILD;
}
ResultCode rc = PatchNtdll(/*hot_patch_needed=*/!local_buffer.empty());
if (rc != SBOX_ALL_OK)
return rc;
rc = child_->TransferVariable("g_interceptions", &remote_buffer,
&g_interceptions, sizeof(g_interceptions));
return rc;
}
size_t InterceptionManager::GetBufferSize() const {
std::set<std::wstring> dlls;
size_t buffer_bytes = 0;
for (const auto& interception : interceptions_) {
// skip interceptions that are performed from the parent
if (!IsInterceptionPerformedByChild(interception))
continue;
if (!dlls.count(interception.dll)) {
// NULL terminate the dll name on the structure
size_t dll_name_bytes = (interception.dll.size() + 1) * sizeof(wchar_t);
// include the dll related size
buffer_bytes += RoundUpToMultiple(
offsetof(DllPatchInfo, dll_name) + dll_name_bytes, sizeof(size_t));
dlls.insert(interception.dll);
}
// we have to NULL terminate the strings on the structure
size_t strings_chars =
interception.function.size() + interception.interceptor.size() + 2;
// a new FunctionInfo is required per function
size_t record_bytes = offsetof(FunctionInfo, function) + strings_chars;
record_bytes = RoundUpToMultiple(record_bytes, sizeof(size_t));
buffer_bytes += record_bytes;
}
if (0 != buffer_bytes)
// add the part of SharedMemory that we have not counted yet
buffer_bytes += offsetof(SharedMemory, dll_list);
return buffer_bytes;
}
// Basically, walk the list of interceptions moving them to the config buffer,
// but keeping together all interceptions that belong to the same dll.
// The config buffer is a local buffer, not the one allocated on the child.
bool InterceptionManager::SetupConfigBuffer(void* buffer, size_t buffer_bytes) {
if (0 == buffer_bytes)
return true;
DCHECK(buffer_bytes > sizeof(SharedMemory));
SharedMemory* shared_memory = reinterpret_cast<SharedMemory*>(buffer);
DllPatchInfo* dll_info = shared_memory->dll_list;
size_t num_dlls = 0;
shared_memory->interceptor_base =
names_used_ ? child_->MainModule() : nullptr;
buffer_bytes -= offsetof(SharedMemory, dll_list);
buffer = dll_info;
std::list<InterceptionData>::iterator it = interceptions_.begin();
for (; it != interceptions_.end();) {
// skip interceptions that are performed from the parent
if (!IsInterceptionPerformedByChild(*it)) {
++it;
continue;
}
const std::wstring dll = it->dll;
if (!SetupDllInfo(*it, &buffer, &buffer_bytes))
return false;
// walk the interceptions from this point, saving the ones that are
// performed on this dll, and removing the entry from the list.
// advance the iterator before removing the element from the list
std::list<InterceptionData>::iterator rest = it;
for (; rest != interceptions_.end();) {
if (rest->dll == dll) {
if (!SetupInterceptionInfo(*rest, &buffer, &buffer_bytes, dll_info))
return false;
if (it == rest)
++it;
rest = interceptions_.erase(rest);
} else {
++rest;
}
}
dll_info = reinterpret_cast<DllPatchInfo*>(buffer);
++num_dlls;
}
shared_memory->num_intercepted_dlls = num_dlls;
return true;
}
// Fills up just the part that depends on the dll, not the info that depends on
// the actual interception.
bool InterceptionManager::SetupDllInfo(const InterceptionData& data,
void** buffer,
size_t* buffer_bytes) const {
DCHECK(buffer_bytes);
DCHECK(buffer);
DCHECK(*buffer);
DllPatchInfo* dll_info = reinterpret_cast<DllPatchInfo*>(*buffer);
// the strings have to be zero terminated
size_t required = offsetof(DllPatchInfo, dll_name) +
(data.dll.size() + 1) * sizeof(wchar_t);
required = RoundUpToMultiple(required, sizeof(size_t));
if (*buffer_bytes < required)
return false;
*buffer_bytes -= required;
*buffer = reinterpret_cast<char*>(*buffer) + required;
// set up the dll info to be what we know about it at this time
dll_info->unload_module = (data.type == INTERCEPTION_UNLOAD_MODULE);
dll_info->record_bytes = required;
dll_info->offset_to_functions = required;
dll_info->num_functions = 0;
data.dll.copy(dll_info->dll_name, data.dll.size());
dll_info->dll_name[data.dll.size()] = L'\0';
return true;
}
bool InterceptionManager::SetupInterceptionInfo(const InterceptionData& data,
void** buffer,
size_t* buffer_bytes,
DllPatchInfo* dll_info) const {
DCHECK(buffer_bytes);
DCHECK(buffer);
DCHECK(*buffer);
if ((dll_info->unload_module) && (data.function != kUnloadDLLDummyFunction)) {
// Can't specify a dll for both patch and unload.
NOTREACHED_IN_MIGRATION();
}
FunctionInfo* function = reinterpret_cast<FunctionInfo*>(*buffer);
size_t name_bytes = data.function.size();
size_t interceptor_bytes = data.interceptor.size();
// the strings at the end of the structure are zero terminated
size_t required =
offsetof(FunctionInfo, function) + name_bytes + interceptor_bytes + 2;
required = RoundUpToMultiple(required, sizeof(size_t));
if (*buffer_bytes < required)
return false;
// update the caller's values
*buffer_bytes -= required;
*buffer = reinterpret_cast<char*>(*buffer) + required;
function->record_bytes = required;
function->type = data.type;
function->id = data.id;
function->interceptor_address = data.interceptor_address;
char* names = function->function;
data.function.copy(names, name_bytes);
names += name_bytes;
*names++ = '\0';
// interceptor follows the function_name
data.interceptor.copy(names, interceptor_bytes);
names += interceptor_bytes;
*names++ = '\0';
// update the dll table
dll_info->num_functions++;
dll_info->record_bytes += required;
return true;
}
// Only return true if the child should be able to perform this interception.
bool InterceptionManager::IsInterceptionPerformedByChild(
const InterceptionData& data) const {
if (INTERCEPTION_INVALID == data.type)
return false;
if (INTERCEPTION_SERVICE_CALL == data.type)
return false;
if (data.type >= INTERCEPTION_LAST)
return false;
std::wstring ntdll(kNtdllName);
if (ntdll == data.dll)
return false; // ntdll has to be intercepted from the parent
return true;
}
ResultCode InterceptionManager::PatchNtdll(bool hot_patch_needed) {
// Maybe there is nothing to do
if (!hot_patch_needed && interceptions_.empty())
return SBOX_ALL_OK;
if (hot_patch_needed) {
ADD_NT_INTERCEPTION(NtMapViewOfSection, MAP_VIEW_OF_SECTION_ID, 44);
ADD_NT_INTERCEPTION(NtUnmapViewOfSection, UNMAP_VIEW_OF_SECTION_ID, 12);
}
// Reserve a full 64k memory range in the child process.
HANDLE child = child_->Process();
BYTE* thunk_base = reinterpret_cast<BYTE*>(::VirtualAllocEx(
child, nullptr, kAllocGranularity, MEM_RESERVE, PAGE_NOACCESS));
// Find an aligned, random location within the reserved range.
size_t thunk_bytes =
interceptions_.size() * sizeof(ThunkData) + sizeof(DllInterceptionData);
size_t thunk_offset = internal::GetGranularAlignedRandomOffset(thunk_bytes);
// Split the base and offset along page boundaries.
thunk_base += thunk_offset & ~(kPageSize - 1);
thunk_offset &= kPageSize - 1;
// Make an aligned, padded allocation, and move the pointer to our chunk.
size_t thunk_bytes_padded = base::bits::AlignUp(thunk_bytes, kPageSize);
thunk_base = reinterpret_cast<BYTE*>(
::VirtualAllocEx(child, thunk_base, thunk_bytes_padded, MEM_COMMIT,
PAGE_EXECUTE_READWRITE));
CHECK(thunk_base); // If this fails we'd crash anyway on an invalid access.
DllInterceptionData* thunks =
reinterpret_cast<DllInterceptionData*>(thunk_base + thunk_offset);
// this should write all the individual thunks to the child's memory
base::expected<PatchClientResultData, ResultCode> patch =
PatchClientFunctions(thunks, thunk_bytes);
if (!patch.has_value()) {
return patch.error();
}
// and now write the first part of the table to the child's memory
SIZE_T written;
bool ok =
!!::WriteProcessMemory(child, thunks, &patch.value().dll_data,
offsetof(DllInterceptionData, thunks), &written);
if (!ok || (offsetof(DllInterceptionData, thunks) != written))
return SBOX_ERROR_CANNOT_WRITE_INTERCEPTION_THUNK;
// Attempt to protect all the thunks, but ignore failure
DWORD old_protection;
::VirtualProtectEx(child, thunks, thunk_bytes, PAGE_EXECUTE_READ,
&old_protection);
ResultCode ret =
child_->TransferVariable("g_originals", &patch.value().originals,
&g_originals, sizeof(g_originals));
return ret;
}
base::expected<PatchClientResultData, ResultCode>
InterceptionManager::PatchClientFunctions(DllInterceptionData* thunks,
size_t thunk_bytes) {
DCHECK(thunks);
HMODULE ntdll_base = ::GetModuleHandle(kNtdllName);
if (!ntdll_base)
return base::unexpected(SBOX_ERROR_NO_HANDLE);
PatchClientResultData patch;
patch.dll_data.data_bytes = thunk_bytes;
patch.dll_data.num_thunks = 0;
patch.dll_data.used_bytes = offsetof(DllInterceptionData, thunks);
ServiceResolverThunk thunk(child_->Process(), /*relaxed=*/true);
patch.originals = {};
for (auto interception : interceptions_) {
if (interception.dll != kNtdllName) {
return base::unexpected(SBOX_ERROR_BAD_PARAMS);
}
if (INTERCEPTION_SERVICE_CALL != interception.type)
return base::unexpected(SBOX_ERROR_BAD_PARAMS);
NTSTATUS ret = thunk.Setup(
ntdll_base, nullptr, interception.function.c_str(),
interception.interceptor.c_str(), interception.interceptor_address,
&thunks->thunks[patch.dll_data.num_thunks],
thunk_bytes - patch.dll_data.used_bytes, nullptr);
if (!NT_SUCCESS(ret)) {
::SetLastError(GetLastErrorFromNtStatus(ret));
return base::unexpected(SBOX_ERROR_CANNOT_SETUP_INTERCEPTION_THUNK);
}
DCHECK(!patch.originals.functions[interception.id]);
patch.originals.functions[interception.id] =
&thunks->thunks[patch.dll_data.num_thunks];
patch.dll_data.num_thunks++;
patch.dll_data.used_bytes += sizeof(ThunkData);
}
return patch;
}
} // namespace sandbox