// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include "build/build_config.h"
#include "skia/ext/convolver.h"
#include "skia/ext/convolver_LSX.h"
#include "third_party/skia/include/core/SkTypes.h"
#include <lsxintrin.h>
#define LSX_LD(psrc) *((__m128i *)(psrc))
#define LSX_ST(in, pdst) *((__m128i *)(pdst)) = (in)
#define _MM_SHUFFLE(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
namespace skia {
static __m128i emulate_lsx_set_epi16(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
uint16_t e, uint16_t f, uint16_t g, uint16_t h) {
v8u16 retv = {h, g, f, e, d, c, b, a};
return (__m128i)retv;
}
static __m128i emulate_lsx_loadl_epi64(const void* mem_addr) {
__m128i tmp = __lsx_vldi(0);
__m128i ptr_lsx = __lsx_vldrepl_d((void *)(mem_addr), 0);
return __lsx_vilvl_d(tmp, ptr_lsx);
}
static __m128i emulate_lsx_shufflelo_epi16_0(__m128i data) {
v4i32 v0 = {0, 0, -1, -1};
__m128i v_hi = __lsx_vand_v(data, (__m128i)v0);
data = __lsx_vshuf4i_h(data, _MM_SHUFFLE(1, 1, 0, 0));
v0 = (v4i32)__lsx_vnor_v((__m128i)v0, (__m128i)v0);
data = __lsx_vand_v(data, (__m128i)v0);
return __lsx_vor_v(data, v_hi);
}
static __m128i emulate_lsx_shufflelo_epi16_1(__m128i data) {
v4i32 v0 = {0, 0, -1, -1};
__m128i v_hi = __lsx_vand_v(data, (__m128i)v0);
data = __lsx_vshuf4i_h(data, _MM_SHUFFLE(3, 3, 2, 2));
v0 = (v4i32)__lsx_vnor_v((__m128i)v0, (__m128i)v0);
data = __lsx_vand_v(data, (__m128i)v0);
return __lsx_vor_v(data, v_hi);
}
static __m128i emulate_lsx_packs_epi32(__m128i a, __m128i b) {
__m128i tmp0 = __lsx_vsat_w(a, 15);
__m128i tmp1 = __lsx_vsat_w(b, 15);
return __lsx_vpickev_h(tmp1, tmp0);
}
static __m128i emulate_lsx_packus_epi16(__m128i a, __m128i b) {
a = __lsx_vmaxi_h(a, 0);
b = __lsx_vmaxi_h(b, 0);
__m128i tmp0 = __lsx_vsat_hu(a, 7);
__m128i tmp1 = __lsx_vsat_hu(b, 7);
return __lsx_vpickev_b(tmp1, tmp0);
}
static __m128i emulate_lsx_srai_epi32(__m128i a, int imm8) {
__m128i tmp0 = __lsx_vldrepl_w(&imm8, 0);
return __lsx_vsra_w(a, tmp0);
}
// Convolves horizontally along a single row. The row data is given in
// |src_data| and continues for the num_values() of the filter.
void ConvolveHorizontally_LSX(const unsigned char* src_data,
const ConvolutionFilter1D& filter,
unsigned char* out_row,
bool /*has_alpha*/) {
int num_values = filter.num_values();
int filter_offset, filter_length;
__m128i zero = __lsx_vldi(0);
__m128i mask[4];
// |mask| will be used to decimate all extra filter coefficients that are
// loaded by SIMD when |filter_length| is not divisible by 4.
// mask[0] is not used in following algorithm.
mask[1] = emulate_lsx_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
mask[2] = emulate_lsx_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
mask[3] = emulate_lsx_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
// Output one pixel each iteration, calculating all channels (RGBA) together.
for (int out_x = 0; out_x < num_values; out_x++) {
const ConvolutionFilter1D::Fixed* filter_values =
filter.FilterForValue(out_x, &filter_offset, &filter_length);
__m128i accum = __lsx_vldi(0);
// Compute the first pixel in this row that the filter affects. It will
// touch |filter_length| pixels (4 bytes each) after this.
const __m128i* row_to_filter =
reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
// We will load and accumulate with four coefficients per iteration.
for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
// Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
__m128i coeff, coeff16;
// [16] xx xx xx xx c3 c2 c1 c0
coeff = emulate_lsx_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
// [16] xx xx xx xx c1 c1 c0 c0
coeff16 = emulate_lsx_shufflelo_epi16_0(coeff);
// [16] c1 c1 c1 c1 c0 c0 c0 c0
coeff16 = __lsx_vilvl_h(coeff16, coeff16);
// Load four pixels => unpack the first two pixels to 16 bits =>
// multiply with coefficients => accumulate the convolution result.
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
__m128i src8 = LSX_LD(row_to_filter);
// [16] a1 b1 g1 r1 a0 b0 g0 r0
__m128i src16 = __lsx_vilvl_b(zero, src8);
__m128i mul_hi = __lsx_vmuh_h(src16, coeff16);
__m128i mul_lo = __lsx_vmul_h(src16, coeff16);
// [32] a0*c0 b0*c0 g0*c0 r0*c0
__m128i t = __lsx_vilvl_h(mul_hi, mul_lo);
accum = __lsx_vadd_w(accum, t);
// [32] a1*c1 b1*c1 g1*c1 r1*c1
t = __lsx_vilvh_h(mul_hi, mul_lo);
accum = __lsx_vadd_w(accum, t);
// Duplicate 3rd and 4th coefficients for all channels =>
// unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
// => accumulate the convolution results.
// [16] xx xx xx xx c3 c3 c2 c2
coeff16 = emulate_lsx_shufflelo_epi16_1(coeff);
// [16] c3 c3 c3 c3 c2 c2 c2 c2
coeff16 = __lsx_vilvl_h(coeff16, coeff16);
// [16] a3 g3 b3 r3 a2 g2 b2 r2
src16 = __lsx_vilvh_b(zero, src8);
mul_hi = __lsx_vmuh_h(src16, coeff16);
mul_lo = __lsx_vmul_h(src16, coeff16);
// [32] a2*c2 b2*c2 g2*c2 r2*c2
t = __lsx_vilvl_h(mul_hi, mul_lo);
accum = __lsx_vadd_w(accum, t);
// [32] a3*c3 b3*c3 g3*c3 r3*c3
t = __lsx_vilvh_h(mul_hi, mul_lo);
accum = __lsx_vadd_w(accum, t);
// Advance the pixel and coefficients pointers.
row_to_filter += 1;
filter_values += 4;
}
// When |filter_length| is not divisible by 4, we need to decimate some of
// the filter coefficient that was loaded incorrectly to zero; Other than
// that the algorithm is same with above, exceot that the 4th pixel will be
// always absent.
int r = filter_length&3;
if (r) {
// Note: filter_values must be padded to align_up(filter_offset, 8).
__m128i coeff, coeff16;
coeff = emulate_lsx_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
// Mask out extra filter taps.
coeff = __lsx_vand_v(coeff, mask[r]);
coeff16 = emulate_lsx_shufflelo_epi16_0(coeff);
coeff16 = __lsx_vilvl_h(coeff16, coeff16);
// Note: line buffer must be padded to align_up(filter_offset, 16).
// We resolve this by use C-version for the last horizontal line.
__m128i src8 = LSX_LD(row_to_filter);
__m128i src16 = __lsx_vilvl_b(zero, src8);
__m128i mul_hi = __lsx_vmuh_h(src16, coeff16);
__m128i mul_lo = __lsx_vmul_h(src16, coeff16);
__m128i t = __lsx_vilvl_h(mul_hi, mul_lo);
accum = __lsx_vadd_w(accum, t);
t = __lsx_vilvh_h(mul_hi, mul_lo);
accum = __lsx_vadd_w(accum, t);
src16 = __lsx_vilvh_b(zero, src8);
coeff16 = emulate_lsx_shufflelo_epi16_1(coeff);
coeff16 = __lsx_vilvl_h(coeff16, coeff16);
mul_hi = __lsx_vmuh_h(src16, coeff16);
mul_lo = __lsx_vmul_h(src16, coeff16);
t = __lsx_vilvl_h(mul_hi, mul_lo);
accum = __lsx_vadd_w(accum, t);
}
// Shift right for fixed point implementation.
accum = emulate_lsx_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);
// Packing 32 bits |accum| to 16 bits per channel (signed saturation).
accum = emulate_lsx_packs_epi32(accum, zero);
// Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
accum = emulate_lsx_packus_epi16(accum, zero);
// Store the pixel value of 32 bits.
*(reinterpret_cast<int*>(out_row)) = __lsx_vpickve2gr_w(accum, 0);
out_row += 4;
}
}
// Convolves horizontally along four rows. The row data is given in
// |src_data| and continues for the num_values() of the filter.
// The algorithm is almost same as |ConvolveHorizontally_LSX|. Please
// refer to that function for detailed comments.
void Convolve4RowsHorizontally_LSX(const unsigned char* src_data[4],
const ConvolutionFilter1D& filter,
unsigned char* out_row[4]) {
int num_values = filter.num_values();
int filter_offset, filter_length;
__m128i zero = __lsx_vldi(0);
__m128i mask[4];
// |mask| will be used to decimate all extra filter coefficients that are
// loaded by SIMD when |filter_length| is not divisible by 4.
// mask[0] is not used in following algorithm.
mask[1] = emulate_lsx_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
mask[2] = emulate_lsx_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
mask[3] = emulate_lsx_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
// Output one pixel each iteration, calculating all channels (RGBA) together.
for (int out_x = 0; out_x < num_values; out_x++) {
const ConvolutionFilter1D::Fixed* filter_values =
filter.FilterForValue(out_x, &filter_offset, &filter_length);
// four pixels in a column per iteration.
__m128i accum0 = __lsx_vldi(0);
__m128i accum1 = __lsx_vldi(0);
__m128i accum2 = __lsx_vldi(0);
__m128i accum3 = __lsx_vldi(0);
int start = (filter_offset<<2);
// We will load and accumulate with four coefficients per iteration.
for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
__m128i coeff, coeff16lo, coeff16hi;
// [16] xx xx xx xx c3 c2 c1 c0
coeff = emulate_lsx_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
// [16] xx xx xx xx c1 c1 c0 c0
coeff16lo = emulate_lsx_shufflelo_epi16_0(coeff);
// [16] c1 c1 c1 c1 c0 c0 c0 c0
coeff16lo = __lsx_vilvl_h(coeff16lo, coeff16lo);
// [16] xx xx xx xx c3 c3 c2 c2
coeff16hi = emulate_lsx_shufflelo_epi16_1(coeff);
// [16] c3 c3 c3 c3 c2 c2 c2 c2
coeff16hi = __lsx_vilvl_h(coeff16hi, coeff16hi);
__m128i src8, src16, mul_hi, mul_lo, t;
#define ITERATION(src, accum) \
src8 = LSX_LD(reinterpret_cast<const __m128i*>(src)); \
src16 = __lsx_vilvl_b(zero, src8); \
mul_hi = __lsx_vmuh_h(src16, coeff16lo); \
mul_lo = __lsx_vmul_h(src16, coeff16lo); \
t = __lsx_vilvl_h(mul_hi, mul_lo); \
accum = __lsx_vadd_w(accum, t); \
t = __lsx_vilvh_h(mul_hi, mul_lo); \
accum = __lsx_vadd_w(accum, t); \
src16 = __lsx_vilvh_b(zero, src8); \
mul_hi = __lsx_vmuh_h(src16, coeff16hi); \
mul_lo = __lsx_vmul_h(src16, coeff16hi); \
t = __lsx_vilvl_h(mul_hi, mul_lo); \
accum = __lsx_vadd_w(accum, t); \
t = __lsx_vilvh_h(mul_hi, mul_lo); \
accum = __lsx_vadd_w(accum, t)
ITERATION(src_data[0] + start, accum0);
ITERATION(src_data[1] + start, accum1);
ITERATION(src_data[2] + start, accum2);
ITERATION(src_data[3] + start, accum3);
start += 16;
filter_values += 4;
}
int r = filter_length & 3;
if (r) {
// Note: filter_values must be padded to align_up(filter_offset, 8);
__m128i coeff;
coeff = emulate_lsx_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
// Mask out extra filter taps.
coeff = __lsx_vand_v(coeff, mask[r]);
__m128i coeff16lo = emulate_lsx_shufflelo_epi16_0(coeff);
/* c1 c1 c1 c1 c0 c0 c0 c0 */
coeff16lo = __lsx_vilvl_h(coeff16lo, coeff16lo);
__m128i coeff16hi = emulate_lsx_shufflelo_epi16_1(coeff);
coeff16hi = __lsx_vilvl_h(coeff16hi, coeff16hi);
__m128i src8, src16, mul_hi, mul_lo, t;
ITERATION(src_data[0] + start, accum0);
ITERATION(src_data[1] + start, accum1);
ITERATION(src_data[2] + start, accum2);
ITERATION(src_data[3] + start, accum3);
}
accum0 = emulate_lsx_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
accum0 = emulate_lsx_packs_epi32(accum0, zero);
accum0 = emulate_lsx_packus_epi16(accum0, zero);
accum1 = emulate_lsx_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
accum1 = emulate_lsx_packs_epi32(accum1, zero);
accum1 = emulate_lsx_packus_epi16(accum1, zero);
accum2 = emulate_lsx_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
accum2 = emulate_lsx_packs_epi32(accum2, zero);
accum2 = emulate_lsx_packus_epi16(accum2, zero);
accum3 = emulate_lsx_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
accum3 = emulate_lsx_packs_epi32(accum3, zero);
accum3 = emulate_lsx_packus_epi16(accum3, zero);
*(reinterpret_cast<int*>(out_row[0])) = __lsx_vpickve2gr_w(accum0, 0);
*(reinterpret_cast<int*>(out_row[1])) = __lsx_vpickve2gr_w(accum1, 0);
*(reinterpret_cast<int*>(out_row[2])) = __lsx_vpickve2gr_w(accum2, 0);
*(reinterpret_cast<int*>(out_row[3])) = __lsx_vpickve2gr_w(accum3, 0);
out_row[0] += 4;
out_row[1] += 4;
out_row[2] += 4;
out_row[3] += 4;
}
}
// Does vertical convolution to produce one output row. The filter values and
// length are given in the first two parameters. These are applied to each
// of the rows pointed to in the |source_data_rows| array, with each row
// being |pixel_width| wide.
//
// The output must have room for |pixel_width * 4| bytes.
template<bool has_alpha>
void ConvolveVertically_LSX(const ConvolutionFilter1D::Fixed* filter_values,
int filter_length,
unsigned char* const* source_data_rows,
int pixel_width,
unsigned char* out_row) {
int width = pixel_width & ~3;
__m128i zero = __lsx_vldi(0);
__m128i accum0, accum1, accum2, accum3, coeff16;
const __m128i* src;
// Output four pixels per iteration (16 bytes).
for (int out_x = 0; out_x < width; out_x += 4) {
// Accumulated result for each pixel. 32 bits per RGBA channel.
accum0 = __lsx_vldi(0);
accum1 = __lsx_vldi(0);
accum2 = __lsx_vldi(0);
accum3 = __lsx_vldi(0);
int values = 0;
// Convolve with one filter coefficient per iteration.
for (int filter_y = 0; filter_y < filter_length; filter_y++) {
// Duplicate the filter coefficient 8 times.
// [16] cj cj cj cj cj cj cj cj
values = filter_values[filter_y];
coeff16 = __lsx_vldrepl_h(&values, 0);
// Load four pixels (16 bytes) together.
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
src = reinterpret_cast<const __m128i*>(
&source_data_rows[filter_y][out_x << 2]);
__m128i src8 = LSX_LD(src);
// Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
// multiply with current coefficient => accumulate the result.
// [16] a1 b1 g1 r1 a0 b0 g0 r0
__m128i src16 = __lsx_vilvl_b(zero, src8);
__m128i mul_hi = __lsx_vmuh_h(src16, coeff16);
__m128i mul_lo = __lsx_vmul_h(src16, coeff16);
// [32] a0 b0 g0 r0
__m128i t = __lsx_vilvl_h(mul_hi, mul_lo);
accum0 = __lsx_vadd_w(accum0, t);
// [32] a1 b1 g1 r1
t = __lsx_vilvh_h(mul_hi, mul_lo);
accum1 = __lsx_vadd_w(accum1, t);
// Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
// multiply with current coefficient => accumulate the result.
// [16] a3 b3 g3 r3 a2 b2 g2 r2
src16 = __lsx_vilvh_b(zero, src8);
mul_hi = __lsx_vmuh_h(src16, coeff16);
mul_lo = __lsx_vmul_h(src16, coeff16);
// [32] a2 b2 g2 r2
t = __lsx_vilvl_h(mul_hi, mul_lo);
accum2 = __lsx_vadd_w(accum2, t);
// [32] a3 b3 g3 r3
t = __lsx_vilvh_h(mul_hi, mul_lo);
accum3 = __lsx_vadd_w(accum3, t);
}
// Shift right for fixed point implementation.
accum0 = emulate_lsx_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
accum1 = emulate_lsx_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
accum2 = emulate_lsx_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
accum3 = emulate_lsx_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
// Packing 32 bits |accum| to 16 bits per channel (signed saturation).
// [16] a1 b1 g1 r1 a0 b0 g0 r0
accum0 = emulate_lsx_packs_epi32(accum0, accum1);
// [16] a3 b3 g3 r3 a2 b2 g2 r2
accum2 = emulate_lsx_packs_epi32(accum2, accum3);
// Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
accum0 = emulate_lsx_packus_epi16(accum0, accum2);
if (has_alpha) {
// Compute the max(ri, gi, bi) for each pixel.
// [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
__m128i a = __lsx_vsrli_w(accum0, 8);
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
__m128i b = __lsx_vmax_bu(a, accum0); // Max of r and g.
// [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
a = __lsx_vsrli_w(accum0, 16);
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
b = __lsx_vmax_bu(a, b); // Max of r and g and b.
// [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
b = __lsx_vslli_w(b, 24);
// Make sure the value of alpha channel is always larger than maximum
// value of color channels.
accum0 = __lsx_vmax_bu(b, accum0);
} else {
// Set value of alpha channels to 0xFF.
unsigned int a = 0xff000000;
__m128i mask = __lsx_vldrepl_w(&a, 0);
accum0 = __lsx_vor_v(accum0, mask);
}
// Store the convolution result (16 bytes) and advance the pixel pointers.
LSX_ST(accum0, reinterpret_cast<__m128i*>(out_row));
out_row += 16;
}
// When the width of the output is not divisible by 4, We need to save one
// pixel (4 bytes) each time. And also the fourth pixel is always absent.
if (pixel_width & 3) {
accum0 = __lsx_vldi(0);
accum1 = __lsx_vldi(0);
accum2 = __lsx_vldi(0);
int values = 0;
for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
values = filter_values[filter_y];
coeff16 = __lsx_vldrepl_h(&values, 0);
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
src = reinterpret_cast<const __m128i*>(
&source_data_rows[filter_y][width<<2]);
__m128i src8 = LSX_LD(src);
// [16] a1 b1 g1 r1 a0 b0 g0 r0
__m128i src16 = __lsx_vilvl_b(zero, src8);
__m128i mul_hi = __lsx_vmuh_h(src16, coeff16);
__m128i mul_lo = __lsx_vmul_h(src16, coeff16);
// [32] a0 b0 g0 r0
__m128i t = __lsx_vilvl_h(mul_hi, mul_lo);
accum0 = __lsx_vadd_w(t, accum0);
// [32] a1 b1 g1 r1
t = __lsx_vilvh_h(mul_hi, mul_lo);
accum1 = __lsx_vadd_w(accum1, t);
// [16] a3 b3 g3 r3 a2 b2 g2 r2
src16 = __lsx_vilvh_b(zero, src8);
mul_hi = __lsx_vmuh_h(src16, coeff16);
mul_lo = __lsx_vmul_h(src16, coeff16);
// [32] a2 b2 g2 r2
t = __lsx_vilvl_h(mul_hi, mul_lo);
accum2 = __lsx_vadd_w(accum2, t);
}
accum0 = emulate_lsx_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
accum1 = emulate_lsx_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
accum2 = emulate_lsx_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
// [16] a1 b1 g1 r1 a0 b0 g0 r0
accum0 = emulate_lsx_packs_epi32(accum0, accum1);
// [16] a3 b3 g3 r3 a2 b2 g2 r2
accum2 = emulate_lsx_packs_epi32(accum2, zero);
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
accum0 = emulate_lsx_packus_epi16(accum0, accum2);
if (has_alpha) {
// [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
__m128i a = __lsx_vsrli_w(accum0, 8);
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
__m128i b = __lsx_vmax_bu(a, accum0); // Max of r and g.
// [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
a = __lsx_vsrli_w(accum0, 16);
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
b = __lsx_vmax_bu(a, b); // Max of r and g and b.
// [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
b = __lsx_vslli_w(b, 24);
accum0 = __lsx_vmax_bu(b, accum0);
} else {
unsigned int a = 0xff000000;
__m128i mask = __lsx_vldrepl_w(&a, 0);
accum0 = __lsx_vor_v(accum0, mask);
}
for (int out_x = width; out_x < pixel_width; out_x++) {
*(reinterpret_cast<int*>(out_row)) = __lsx_vpickve2gr_w(accum0, 0);
accum0 = __lsx_vbsrl_v(accum0, 4);
out_row += 4;
}
}
}
void ConvolveVertically_LSX(const ConvolutionFilter1D::Fixed* filter_values,
int filter_length,
unsigned char* const* source_data_rows,
int pixel_width,
unsigned char* out_row,
bool has_alpha) {
if (has_alpha) {
ConvolveVertically_LSX<true>(filter_values,
filter_length,
source_data_rows,
pixel_width,
out_row);
} else {
ConvolveVertically_LSX<false>(filter_values,
filter_length,
source_data_rows,
pixel_width,
out_row);
}
}
} // namespace skia