// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: btree_map.h // ----------------------------------------------------------------------------- // // This header file defines B-tree maps: sorted associative containers mapping // keys to values. // // * `absl::btree_map<>` // * `absl::btree_multimap<>` // // These B-tree types are similar to the corresponding types in the STL // (`std::map` and `std::multimap`) and generally conform to the STL interfaces // of those types. However, because they are implemented using B-trees, they // are more efficient in most situations. // // Unlike `std::map` and `std::multimap`, which are commonly implemented using // red-black tree nodes, B-tree maps use more generic B-tree nodes able to hold // multiple values per node. Holding multiple values per node often makes // B-tree maps perform better than their `std::map` counterparts, because // multiple entries can be checked within the same cache hit. // // However, these types should not be considered drop-in replacements for // `std::map` and `std::multimap` as there are some API differences, which are // noted in this header file. The most consequential differences with respect to // migrating to b-tree from the STL types are listed in the next paragraph. // Other API differences are minor. // // Importantly, insertions and deletions may invalidate outstanding iterators, // pointers, and references to elements. Such invalidations are typically only // an issue if insertion and deletion operations are interleaved with the use of // more than one iterator, pointer, or reference simultaneously. For this // reason, `insert()`, `erase()`, and `extract_and_get_next()` return a valid // iterator at the current position. Another important difference is that // key-types must be copy-constructible. // // Another API difference is that btree iterators can be subtracted, and this // is faster than using std::distance. // // B-tree maps are not exception-safe. #ifndef ABSL_CONTAINER_BTREE_MAP_H_ #define ABSL_CONTAINER_BTREE_MAP_H_ #include "absl/base/attributes.h" #include "absl/container/internal/btree.h" // IWYU pragma: export #include "absl/container/internal/btree_container.h" // IWYU pragma: export namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { template <typename Key, typename Data, typename Compare, typename Alloc, int TargetNodeSize, bool IsMulti> struct map_params; } // namespace container_internal // absl::btree_map<> // // An `absl::btree_map<K, V>` is an ordered associative container of // unique keys and associated values designed to be a more efficient replacement // for `std::map` (in most cases). // // Keys are sorted using an (optional) comparison function, which defaults to // `std::less<K>`. // // An `absl::btree_map<K, V>` uses a default allocator of // `std::allocator<std::pair<const K, V>>` to allocate (and deallocate) // nodes, and construct and destruct values within those nodes. You may // instead specify a custom allocator `A` (which in turn requires specifying a // custom comparator `C`) as in `absl::btree_map<K, V, C, A>`. // template <typename Key, typename Value, typename Compare = std::less<Key>, typename Alloc = std::allocator<std::pair<const Key, Value>>> class ABSL_ATTRIBUTE_OWNER btree_map : public container_internal::btree_map_container< container_internal::btree<container_internal::map_params< Key, Value, Compare, Alloc, /*TargetNodeSize=*/256, /*IsMulti=*/false>>> { using Base = typename btree_map::btree_map_container; public: // Constructors and Assignment Operators // // A `btree_map` supports the same overload set as `std::map` // for construction and assignment: // // * Default constructor // // absl::btree_map<int, std::string> map1; // // * Initializer List constructor // // absl::btree_map<int, std::string> map2 = // {{1, "huey"}, {2, "dewey"}, {3, "louie"},}; // // * Copy constructor // // absl::btree_map<int, std::string> map3(map2); // // * Copy assignment operator // // absl::btree_map<int, std::string> map4; // map4 = map3; // // * Move constructor // // // Move is guaranteed efficient // absl::btree_map<int, std::string> map5(std::move(map4)); // // * Move assignment operator // // // May be efficient if allocators are compatible // absl::btree_map<int, std::string> map6; // map6 = std::move(map5); // // * Range constructor // // std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}}; // absl::btree_map<int, std::string> map7(v.begin(), v.end()); btree_map() { … } using Base::Base; // btree_map::begin() // // Returns an iterator to the beginning of the `btree_map`. using Base::begin; // btree_map::cbegin() // // Returns a const iterator to the beginning of the `btree_map`. using Base::cbegin; // btree_map::end() // // Returns an iterator to the end of the `btree_map`. using Base::end; // btree_map::cend() // // Returns a const iterator to the end of the `btree_map`. using Base::cend; // btree_map::empty() // // Returns whether or not the `btree_map` is empty. using Base::empty; // btree_map::max_size() // // Returns the largest theoretical possible number of elements within a // `btree_map` under current memory constraints. This value can be thought // of as the largest value of `std::distance(begin(), end())` for a // `btree_map<Key, T>`. using Base::max_size; // btree_map::size() // // Returns the number of elements currently within the `btree_map`. using Base::size; // btree_map::clear() // // Removes all elements from the `btree_map`. Invalidates any references, // pointers, or iterators referring to contained elements. using Base::clear; // btree_map::erase() // // Erases elements within the `btree_map`. If an erase occurs, any references, // pointers, or iterators are invalidated. // Overloads are listed below. // // iterator erase(iterator position): // iterator erase(const_iterator position): // // Erases the element at `position` of the `btree_map`, returning // the iterator pointing to the element after the one that was erased // (or end() if none exists). // // iterator erase(const_iterator first, const_iterator last): // // Erases the elements in the open interval [`first`, `last`), returning // the iterator pointing to the element after the interval that was erased // (or end() if none exists). // // template <typename K> size_type erase(const K& key): // // Erases the element with the matching key, if it exists, returning the // number of elements erased (0 or 1). using Base::erase; // btree_map::insert() // // Inserts an element of the specified value into the `btree_map`, // returning an iterator pointing to the newly inserted element, provided that // an element with the given key does not already exist. If an insertion // occurs, any references, pointers, or iterators are invalidated. // Overloads are listed below. // // std::pair<iterator,bool> insert(const value_type& value): // // Inserts a value into the `btree_map`. Returns a pair consisting of an // iterator to the inserted element (or to the element that prevented the // insertion) and a bool denoting whether the insertion took place. // // std::pair<iterator,bool> insert(value_type&& value): // // Inserts a moveable value into the `btree_map`. Returns a pair // consisting of an iterator to the inserted element (or to the element that // prevented the insertion) and a bool denoting whether the insertion took // place. // // iterator insert(const_iterator hint, const value_type& value): // iterator insert(const_iterator hint, value_type&& value): // // Inserts a value, using the position of `hint` as a non-binding suggestion // for where to begin the insertion search. Returns an iterator to the // inserted element, or to the existing element that prevented the // insertion. // // void insert(InputIterator first, InputIterator last): // // Inserts a range of values [`first`, `last`). // // void insert(std::initializer_list<init_type> ilist): // // Inserts the elements within the initializer list `ilist`. using Base::insert; // btree_map::insert_or_assign() // // Inserts an element of the specified value into the `btree_map` provided // that a value with the given key does not already exist, or replaces the // corresponding mapped type with the forwarded `obj` argument if a key for // that value already exists, returning an iterator pointing to the newly // inserted element. Overloads are listed below. // // pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj): // pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj): // // Inserts/Assigns (or moves) the element of the specified key into the // `btree_map`. If the returned bool is true, insertion took place, and if // it's false, assignment took place. // // iterator insert_or_assign(const_iterator hint, // const key_type& k, M&& obj): // iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj): // // Inserts/Assigns (or moves) the element of the specified key into the // `btree_map` using the position of `hint` as a non-binding suggestion // for where to begin the insertion search. using Base::insert_or_assign; // btree_map::emplace() // // Inserts an element of the specified value by constructing it in-place // within the `btree_map`, provided that no element with the given key // already exists. // // The element may be constructed even if there already is an element with the // key in the container, in which case the newly constructed element will be // destroyed immediately. Prefer `try_emplace()` unless your key is not // copyable or moveable. // // If an insertion occurs, any references, pointers, or iterators are // invalidated. using Base::emplace; // btree_map::emplace_hint() // // Inserts an element of the specified value by constructing it in-place // within the `btree_map`, using the position of `hint` as a non-binding // suggestion for where to begin the insertion search, and only inserts // provided that no element with the given key already exists. // // The element may be constructed even if there already is an element with the // key in the container, in which case the newly constructed element will be // destroyed immediately. Prefer `try_emplace()` unless your key is not // copyable or moveable. // // If an insertion occurs, any references, pointers, or iterators are // invalidated. using Base::emplace_hint; // btree_map::try_emplace() // // Inserts an element of the specified value by constructing it in-place // within the `btree_map`, provided that no element with the given key // already exists. Unlike `emplace()`, if an element with the given key // already exists, we guarantee that no element is constructed. // // If an insertion occurs, any references, pointers, or iterators are // invalidated. // // Overloads are listed below. // // std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args): // std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args): // // Inserts (via copy or move) the element of the specified key into the // `btree_map`. // // iterator try_emplace(const_iterator hint, // const key_type& k, Args&&... args): // iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args): // // Inserts (via copy or move) the element of the specified key into the // `btree_map` using the position of `hint` as a non-binding suggestion // for where to begin the insertion search. using Base::try_emplace; // btree_map::extract() // // Extracts the indicated element, erasing it in the process, and returns it // as a C++17-compatible node handle. Any references, pointers, or iterators // are invalidated. Overloads are listed below. // // node_type extract(const_iterator position): // // Extracts the element at the indicated position and returns a node handle // owning that extracted data. // // template <typename K> node_type extract(const K& k): // // Extracts the element with the key matching the passed key value and // returns a node handle owning that extracted data. If the `btree_map` // does not contain an element with a matching key, this function returns an // empty node handle. // // NOTE: when compiled in an earlier version of C++ than C++17, // `node_type::key()` returns a const reference to the key instead of a // mutable reference. We cannot safely return a mutable reference without // std::launder (which is not available before C++17). // // NOTE: In this context, `node_type` refers to the C++17 concept of a // move-only type that owns and provides access to the elements in associative // containers (https://en.cppreference.com/w/cpp/container/node_handle). // It does NOT refer to the data layout of the underlying btree. using Base::extract; // btree_map::extract_and_get_next() // // Extracts the indicated element, erasing it in the process, and returns it // as a C++17-compatible node handle along with an iterator to the next // element. // // extract_and_get_next_return_type extract_and_get_next( // const_iterator position): // // Extracts the element at the indicated position, returns a struct // containing a member named `node`: a node handle owning that extracted // data and a member named `next`: an iterator pointing to the next element // in the btree. using Base::extract_and_get_next; // btree_map::merge() // // Extracts elements from a given `source` btree_map into this // `btree_map`. If the destination `btree_map` already contains an // element with an equivalent key, that element is not extracted. using Base::merge; // btree_map::swap(btree_map& other) // // Exchanges the contents of this `btree_map` with those of the `other` // btree_map, avoiding invocation of any move, copy, or swap operations on // individual elements. // // All iterators and references on the `btree_map` remain valid, excepting // for the past-the-end iterator, which is invalidated. using Base::swap; // btree_map::at() // // Returns a reference to the mapped value of the element with key equivalent // to the passed key. using Base::at; // btree_map::contains() // // template <typename K> bool contains(const K& key) const: // // Determines whether an element comparing equal to the given `key` exists // within the `btree_map`, returning `true` if so or `false` otherwise. // // Supports heterogeneous lookup, provided that the map has a compatible // heterogeneous comparator. using Base::contains; // btree_map::count() // // template <typename K> size_type count(const K& key) const: // // Returns the number of elements comparing equal to the given `key` within // the `btree_map`. Note that this function will return either `1` or `0` // since duplicate elements are not allowed within a `btree_map`. // // Supports heterogeneous lookup, provided that the map has a compatible // heterogeneous comparator. using Base::count; // btree_map::equal_range() // // Returns a half-open range [first, last), defined by a `std::pair` of two // iterators, containing all elements with the passed key in the `btree_map`. using Base::equal_range; // btree_map::find() // // template <typename K> iterator find(const K& key): // template <typename K> const_iterator find(const K& key) const: // // Finds an element with the passed `key` within the `btree_map`. // // Supports heterogeneous lookup, provided that the map has a compatible // heterogeneous comparator. using Base::find; // btree_map::lower_bound() // // template <typename K> iterator lower_bound(const K& key): // template <typename K> const_iterator lower_bound(const K& key) const: // // Finds the first element with a key that is not less than `key` within the // `btree_map`. // // Supports heterogeneous lookup, provided that the map has a compatible // heterogeneous comparator. using Base::lower_bound; // btree_map::upper_bound() // // template <typename K> iterator upper_bound(const K& key): // template <typename K> const_iterator upper_bound(const K& key) const: // // Finds the first element with a key that is greater than `key` within the // `btree_map`. // // Supports heterogeneous lookup, provided that the map has a compatible // heterogeneous comparator. using Base::upper_bound; // btree_map::operator[]() // // Returns a reference to the value mapped to the passed key within the // `btree_map`, performing an `insert()` if the key does not already // exist. // // If an insertion occurs, any references, pointers, or iterators are // invalidated. Otherwise iterators are not affected and references are not // invalidated. Overloads are listed below. // // T& operator[](key_type&& key): // T& operator[](const key_type& key): // // Inserts a value_type object constructed in-place if the element with the // given key does not exist. using Base::operator[]; // btree_map::get_allocator() // // Returns the allocator function associated with this `btree_map`. using Base::get_allocator; // btree_map::key_comp(); // // Returns the key comparator associated with this `btree_map`. using Base::key_comp; // btree_map::value_comp(); // // Returns the value comparator associated with this `btree_map`. using Base::value_comp; }; // absl::swap(absl::btree_map<>, absl::btree_map<>) // // Swaps the contents of two `absl::btree_map` containers. template <typename K, typename V, typename C, typename A> void swap(btree_map<K, V, C, A> &x, btree_map<K, V, C, A> &y) { … } // absl::erase_if(absl::btree_map<>, Pred) // // Erases all elements that satisfy the predicate pred from the container. // Returns the number of erased elements. template <typename K, typename V, typename C, typename A, typename Pred> typename btree_map<K, V, C, A>::size_type erase_if( btree_map<K, V, C, A> &map, Pred pred) { … } // absl::btree_multimap // // An `absl::btree_multimap<K, V>` is an ordered associative container of // keys and associated values designed to be a more efficient replacement for // `std::multimap` (in most cases). Unlike `absl::btree_map`, a B-tree multimap // allows multiple elements with equivalent keys. // // Keys are sorted using an (optional) comparison function, which defaults to // `std::less<K>`. // // An `absl::btree_multimap<K, V>` uses a default allocator of // `std::allocator<std::pair<const K, V>>` to allocate (and deallocate) // nodes, and construct and destruct values within those nodes. You may // instead specify a custom allocator `A` (which in turn requires specifying a // custom comparator `C`) as in `absl::btree_multimap<K, V, C, A>`. // template <typename Key, typename Value, typename Compare = std::less<Key>, typename Alloc = std::allocator<std::pair<const Key, Value>>> class ABSL_ATTRIBUTE_OWNER btree_multimap : public container_internal::btree_multimap_container< container_internal::btree<container_internal::map_params< Key, Value, Compare, Alloc, /*TargetNodeSize=*/256, /*IsMulti=*/true>>> { using Base = typename btree_multimap::btree_multimap_container; public: // Constructors and Assignment Operators // // A `btree_multimap` supports the same overload set as `std::multimap` // for construction and assignment: // // * Default constructor // // absl::btree_multimap<int, std::string> map1; // // * Initializer List constructor // // absl::btree_multimap<int, std::string> map2 = // {{1, "huey"}, {2, "dewey"}, {3, "louie"},}; // // * Copy constructor // // absl::btree_multimap<int, std::string> map3(map2); // // * Copy assignment operator // // absl::btree_multimap<int, std::string> map4; // map4 = map3; // // * Move constructor // // // Move is guaranteed efficient // absl::btree_multimap<int, std::string> map5(std::move(map4)); // // * Move assignment operator // // // May be efficient if allocators are compatible // absl::btree_multimap<int, std::string> map6; // map6 = std::move(map5); // // * Range constructor // // std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}}; // absl::btree_multimap<int, std::string> map7(v.begin(), v.end()); btree_multimap() { … } using Base::Base; // btree_multimap::begin() // // Returns an iterator to the beginning of the `btree_multimap`. using Base::begin; // btree_multimap::cbegin() // // Returns a const iterator to the beginning of the `btree_multimap`. using Base::cbegin; // btree_multimap::end() // // Returns an iterator to the end of the `btree_multimap`. using Base::end; // btree_multimap::cend() // // Returns a const iterator to the end of the `btree_multimap`. using Base::cend; // btree_multimap::empty() // // Returns whether or not the `btree_multimap` is empty. using Base::empty; // btree_multimap::max_size() // // Returns the largest theoretical possible number of elements within a // `btree_multimap` under current memory constraints. This value can be // thought of as the largest value of `std::distance(begin(), end())` for a // `btree_multimap<Key, T>`. using Base::max_size; // btree_multimap::size() // // Returns the number of elements currently within the `btree_multimap`. using Base::size; // btree_multimap::clear() // // Removes all elements from the `btree_multimap`. Invalidates any references, // pointers, or iterators referring to contained elements. using Base::clear; // btree_multimap::erase() // // Erases elements within the `btree_multimap`. If an erase occurs, any // references, pointers, or iterators are invalidated. // Overloads are listed below. // // iterator erase(iterator position): // iterator erase(const_iterator position): // // Erases the element at `position` of the `btree_multimap`, returning // the iterator pointing to the element after the one that was erased // (or end() if none exists). // // iterator erase(const_iterator first, const_iterator last): // // Erases the elements in the open interval [`first`, `last`), returning // the iterator pointing to the element after the interval that was erased // (or end() if none exists). // // template <typename K> size_type erase(const K& key): // // Erases the elements matching the key, if any exist, returning the // number of elements erased. using Base::erase; // btree_multimap::insert() // // Inserts an element of the specified value into the `btree_multimap`, // returning an iterator pointing to the newly inserted element. // Any references, pointers, or iterators are invalidated. Overloads are // listed below. // // iterator insert(const value_type& value): // // Inserts a value into the `btree_multimap`, returning an iterator to the // inserted element. // // iterator insert(value_type&& value): // // Inserts a moveable value into the `btree_multimap`, returning an iterator // to the inserted element. // // iterator insert(const_iterator hint, const value_type& value): // iterator insert(const_iterator hint, value_type&& value): // // Inserts a value, using the position of `hint` as a non-binding suggestion // for where to begin the insertion search. Returns an iterator to the // inserted element. // // void insert(InputIterator first, InputIterator last): // // Inserts a range of values [`first`, `last`). // // void insert(std::initializer_list<init_type> ilist): // // Inserts the elements within the initializer list `ilist`. using Base::insert; // btree_multimap::emplace() // // Inserts an element of the specified value by constructing it in-place // within the `btree_multimap`. Any references, pointers, or iterators are // invalidated. using Base::emplace; // btree_multimap::emplace_hint() // // Inserts an element of the specified value by constructing it in-place // within the `btree_multimap`, using the position of `hint` as a non-binding // suggestion for where to begin the insertion search. // // Any references, pointers, or iterators are invalidated. using Base::emplace_hint; // btree_multimap::extract() // // Extracts the indicated element, erasing it in the process, and returns it // as a C++17-compatible node handle. Overloads are listed below. // // node_type extract(const_iterator position): // // Extracts the element at the indicated position and returns a node handle // owning that extracted data. // // template <typename K> node_type extract(const K& k): // // Extracts the element with the key matching the passed key value and // returns a node handle owning that extracted data. If the `btree_multimap` // does not contain an element with a matching key, this function returns an // empty node handle. // // NOTE: when compiled in an earlier version of C++ than C++17, // `node_type::key()` returns a const reference to the key instead of a // mutable reference. We cannot safely return a mutable reference without // std::launder (which is not available before C++17). // // NOTE: In this context, `node_type` refers to the C++17 concept of a // move-only type that owns and provides access to the elements in associative // containers (https://en.cppreference.com/w/cpp/container/node_handle). // It does NOT refer to the data layout of the underlying btree. using Base::extract; // btree_multimap::extract_and_get_next() // // Extracts the indicated element, erasing it in the process, and returns it // as a C++17-compatible node handle along with an iterator to the next // element. // // extract_and_get_next_return_type extract_and_get_next( // const_iterator position): // // Extracts the element at the indicated position, returns a struct // containing a member named `node`: a node handle owning that extracted // data and a member named `next`: an iterator pointing to the next element // in the btree. using Base::extract_and_get_next; // btree_multimap::merge() // // Extracts all elements from a given `source` btree_multimap into this // `btree_multimap`. using Base::merge; // btree_multimap::swap(btree_multimap& other) // // Exchanges the contents of this `btree_multimap` with those of the `other` // btree_multimap, avoiding invocation of any move, copy, or swap operations // on individual elements. // // All iterators and references on the `btree_multimap` remain valid, // excepting for the past-the-end iterator, which is invalidated. using Base::swap; // btree_multimap::contains() // // template <typename K> bool contains(const K& key) const: // // Determines whether an element comparing equal to the given `key` exists // within the `btree_multimap`, returning `true` if so or `false` otherwise. // // Supports heterogeneous lookup, provided that the map has a compatible // heterogeneous comparator. using Base::contains; // btree_multimap::count() // // template <typename K> size_type count(const K& key) const: // // Returns the number of elements comparing equal to the given `key` within // the `btree_multimap`. // // Supports heterogeneous lookup, provided that the map has a compatible // heterogeneous comparator. using Base::count; // btree_multimap::equal_range() // // Returns a half-open range [first, last), defined by a `std::pair` of two // iterators, containing all elements with the passed key in the // `btree_multimap`. using Base::equal_range; // btree_multimap::find() // // template <typename K> iterator find(const K& key): // template <typename K> const_iterator find(const K& key) const: // // Finds an element with the passed `key` within the `btree_multimap`. // // Supports heterogeneous lookup, provided that the map has a compatible // heterogeneous comparator. using Base::find; // btree_multimap::lower_bound() // // template <typename K> iterator lower_bound(const K& key): // template <typename K> const_iterator lower_bound(const K& key) const: // // Finds the first element with a key that is not less than `key` within the // `btree_multimap`. // // Supports heterogeneous lookup, provided that the map has a compatible // heterogeneous comparator. using Base::lower_bound; // btree_multimap::upper_bound() // // template <typename K> iterator upper_bound(const K& key): // template <typename K> const_iterator upper_bound(const K& key) const: // // Finds the first element with a key that is greater than `key` within the // `btree_multimap`. // // Supports heterogeneous lookup, provided that the map has a compatible // heterogeneous comparator. using Base::upper_bound; // btree_multimap::get_allocator() // // Returns the allocator function associated with this `btree_multimap`. using Base::get_allocator; // btree_multimap::key_comp(); // // Returns the key comparator associated with this `btree_multimap`. using Base::key_comp; // btree_multimap::value_comp(); // // Returns the value comparator associated with this `btree_multimap`. using Base::value_comp; }; // absl::swap(absl::btree_multimap<>, absl::btree_multimap<>) // // Swaps the contents of two `absl::btree_multimap` containers. template <typename K, typename V, typename C, typename A> void swap(btree_multimap<K, V, C, A> &x, btree_multimap<K, V, C, A> &y) { … } // absl::erase_if(absl::btree_multimap<>, Pred) // // Erases all elements that satisfy the predicate pred from the container. // Returns the number of erased elements. template <typename K, typename V, typename C, typename A, typename Pred> typename btree_multimap<K, V, C, A>::size_type erase_if( btree_multimap<K, V, C, A> &map, Pred pred) { … } namespace container_internal { // A parameters structure for holding the type parameters for a btree_map. // Compare and Alloc should be nothrow copy-constructible. template <typename Key, typename Data, typename Compare, typename Alloc, int TargetNodeSize, bool IsMulti> struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, IsMulti, /*IsMap=*/true, map_slot_policy<Key, Data>> { … }; } // namespace container_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_CONTAINER_BTREE_MAP_H_