// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/btree_test.h"
#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <iterator>
#include <limits>
#include <map>
#include <memory>
#include <numeric>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/algorithm/container.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/container/btree_map.h"
#include "absl/container/btree_set.h"
#include "absl/container/internal/test_allocator.h"
#include "absl/container/internal/test_instance_tracker.h"
#include "absl/flags/flag.h"
#include "absl/hash/hash_testing.h"
#include "absl/memory/memory.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "absl/types/compare.h"
#include "absl/types/optional.h"
ABSL_FLAG(int, test_values, 10000, "The number of values to use for tests");
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
namespace {
using ::absl::test_internal::CopyableMovableInstance;
using ::absl::test_internal::InstanceTracker;
using ::absl::test_internal::MovableOnlyInstance;
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::IsEmpty;
using ::testing::IsNull;
using ::testing::Pair;
using ::testing::SizeIs;
template <typename T, typename U>
void CheckPairEquals(const T &x, const U &y) {
ABSL_INTERNAL_CHECK(x == y, "Values are unequal.");
}
template <typename T, typename U, typename V, typename W>
void CheckPairEquals(const std::pair<T, U> &x, const std::pair<V, W> &y) {
CheckPairEquals(x.first, y.first);
CheckPairEquals(x.second, y.second);
}
} // namespace
// The base class for a sorted associative container checker. TreeType is the
// container type to check and CheckerType is the container type to check
// against. TreeType is expected to be btree_{set,map,multiset,multimap} and
// CheckerType is expected to be {set,map,multiset,multimap}.
template <typename TreeType, typename CheckerType>
class base_checker {
public:
using key_type = typename TreeType::key_type;
using value_type = typename TreeType::value_type;
using key_compare = typename TreeType::key_compare;
using pointer = typename TreeType::pointer;
using const_pointer = typename TreeType::const_pointer;
using reference = typename TreeType::reference;
using const_reference = typename TreeType::const_reference;
using size_type = typename TreeType::size_type;
using difference_type = typename TreeType::difference_type;
using iterator = typename TreeType::iterator;
using const_iterator = typename TreeType::const_iterator;
using reverse_iterator = typename TreeType::reverse_iterator;
using const_reverse_iterator = typename TreeType::const_reverse_iterator;
public:
base_checker() : const_tree_(tree_) {}
base_checker(const base_checker &other)
: tree_(other.tree_), const_tree_(tree_), checker_(other.checker_) {}
template <typename InputIterator>
base_checker(InputIterator b, InputIterator e)
: tree_(b, e), const_tree_(tree_), checker_(b, e) {}
iterator begin() { return tree_.begin(); }
const_iterator begin() const { return tree_.begin(); }
iterator end() { return tree_.end(); }
const_iterator end() const { return tree_.end(); }
reverse_iterator rbegin() { return tree_.rbegin(); }
const_reverse_iterator rbegin() const { return tree_.rbegin(); }
reverse_iterator rend() { return tree_.rend(); }
const_reverse_iterator rend() const { return tree_.rend(); }
template <typename IterType, typename CheckerIterType>
IterType iter_check(IterType tree_iter, CheckerIterType checker_iter) const {
if (tree_iter == tree_.end()) {
ABSL_INTERNAL_CHECK(checker_iter == checker_.end(),
"Checker iterator not at end.");
} else {
CheckPairEquals(*tree_iter, *checker_iter);
}
return tree_iter;
}
template <typename IterType, typename CheckerIterType>
IterType riter_check(IterType tree_iter, CheckerIterType checker_iter) const {
if (tree_iter == tree_.rend()) {
ABSL_INTERNAL_CHECK(checker_iter == checker_.rend(),
"Checker iterator not at rend.");
} else {
CheckPairEquals(*tree_iter, *checker_iter);
}
return tree_iter;
}
void value_check(const value_type &v) {
typename KeyOfValue<typename TreeType::key_type,
typename TreeType::value_type>::type key_of_value;
const key_type &key = key_of_value(v);
CheckPairEquals(*find(key), v);
lower_bound(key);
upper_bound(key);
equal_range(key);
contains(key);
count(key);
}
void erase_check(const key_type &key) {
EXPECT_FALSE(tree_.contains(key));
EXPECT_EQ(tree_.find(key), const_tree_.end());
EXPECT_FALSE(const_tree_.contains(key));
EXPECT_EQ(const_tree_.find(key), tree_.end());
EXPECT_EQ(tree_.equal_range(key).first,
const_tree_.equal_range(key).second);
}
iterator lower_bound(const key_type &key) {
return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
}
const_iterator lower_bound(const key_type &key) const {
return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
}
iterator upper_bound(const key_type &key) {
return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
}
const_iterator upper_bound(const key_type &key) const {
return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
}
std::pair<iterator, iterator> equal_range(const key_type &key) {
std::pair<typename CheckerType::iterator, typename CheckerType::iterator>
checker_res = checker_.equal_range(key);
std::pair<iterator, iterator> tree_res = tree_.equal_range(key);
iter_check(tree_res.first, checker_res.first);
iter_check(tree_res.second, checker_res.second);
return tree_res;
}
std::pair<const_iterator, const_iterator> equal_range(
const key_type &key) const {
std::pair<typename CheckerType::const_iterator,
typename CheckerType::const_iterator>
checker_res = checker_.equal_range(key);
std::pair<const_iterator, const_iterator> tree_res = tree_.equal_range(key);
iter_check(tree_res.first, checker_res.first);
iter_check(tree_res.second, checker_res.second);
return tree_res;
}
iterator find(const key_type &key) {
return iter_check(tree_.find(key), checker_.find(key));
}
const_iterator find(const key_type &key) const {
return iter_check(tree_.find(key), checker_.find(key));
}
bool contains(const key_type &key) const { return find(key) != end(); }
size_type count(const key_type &key) const {
size_type res = checker_.count(key);
EXPECT_EQ(res, tree_.count(key));
return res;
}
base_checker &operator=(const base_checker &other) {
tree_ = other.tree_;
checker_ = other.checker_;
return *this;
}
int erase(const key_type &key) {
int size = tree_.size();
int res = checker_.erase(key);
EXPECT_EQ(res, tree_.count(key));
EXPECT_EQ(res, tree_.erase(key));
EXPECT_EQ(tree_.count(key), 0);
EXPECT_EQ(tree_.size(), size - res);
erase_check(key);
return res;
}
iterator erase(iterator iter) {
key_type key = iter.key();
int size = tree_.size();
int count = tree_.count(key);
auto checker_iter = checker_.lower_bound(key);
for (iterator tmp(tree_.lower_bound(key)); tmp != iter; ++tmp) {
++checker_iter;
}
auto checker_next = checker_iter;
++checker_next;
checker_.erase(checker_iter);
iter = tree_.erase(iter);
EXPECT_EQ(tree_.size(), checker_.size());
EXPECT_EQ(tree_.size(), size - 1);
EXPECT_EQ(tree_.count(key), count - 1);
if (count == 1) {
erase_check(key);
}
return iter_check(iter, checker_next);
}
void erase(iterator begin, iterator end) {
int size = tree_.size();
int count = std::distance(begin, end);
auto checker_begin = checker_.lower_bound(begin.key());
for (iterator tmp(tree_.lower_bound(begin.key())); tmp != begin; ++tmp) {
++checker_begin;
}
auto checker_end =
end == tree_.end() ? checker_.end() : checker_.lower_bound(end.key());
if (end != tree_.end()) {
for (iterator tmp(tree_.lower_bound(end.key())); tmp != end; ++tmp) {
++checker_end;
}
}
const auto checker_ret = checker_.erase(checker_begin, checker_end);
const auto tree_ret = tree_.erase(begin, end);
EXPECT_EQ(std::distance(checker_.begin(), checker_ret),
std::distance(tree_.begin(), tree_ret));
EXPECT_EQ(tree_.size(), checker_.size());
EXPECT_EQ(tree_.size(), size - count);
}
void clear() {
tree_.clear();
checker_.clear();
}
void swap(base_checker &other) {
tree_.swap(other.tree_);
checker_.swap(other.checker_);
}
void verify() const {
tree_.verify();
EXPECT_EQ(tree_.size(), checker_.size());
// Move through the forward iterators using increment.
auto checker_iter = checker_.begin();
const_iterator tree_iter(tree_.begin());
for (; tree_iter != tree_.end(); ++tree_iter, ++checker_iter) {
CheckPairEquals(*tree_iter, *checker_iter);
}
// Move through the forward iterators using decrement.
for (int n = tree_.size() - 1; n >= 0; --n) {
iter_check(tree_iter, checker_iter);
--tree_iter;
--checker_iter;
}
EXPECT_EQ(tree_iter, tree_.begin());
EXPECT_EQ(checker_iter, checker_.begin());
// Move through the reverse iterators using increment.
auto checker_riter = checker_.rbegin();
const_reverse_iterator tree_riter(tree_.rbegin());
for (; tree_riter != tree_.rend(); ++tree_riter, ++checker_riter) {
CheckPairEquals(*tree_riter, *checker_riter);
}
// Move through the reverse iterators using decrement.
for (int n = tree_.size() - 1; n >= 0; --n) {
riter_check(tree_riter, checker_riter);
--tree_riter;
--checker_riter;
}
EXPECT_EQ(tree_riter, tree_.rbegin());
EXPECT_EQ(checker_riter, checker_.rbegin());
}
const TreeType &tree() const { return tree_; }
size_type size() const {
EXPECT_EQ(tree_.size(), checker_.size());
return tree_.size();
}
size_type max_size() const { return tree_.max_size(); }
bool empty() const {
EXPECT_EQ(tree_.empty(), checker_.empty());
return tree_.empty();
}
protected:
TreeType tree_;
const TreeType &const_tree_;
CheckerType checker_;
};
namespace {
// A checker for unique sorted associative containers. TreeType is expected to
// be btree_{set,map} and CheckerType is expected to be {set,map}.
template <typename TreeType, typename CheckerType>
class unique_checker : public base_checker<TreeType, CheckerType> {
using super_type = base_checker<TreeType, CheckerType>;
public:
using iterator = typename super_type::iterator;
using value_type = typename super_type::value_type;
public:
unique_checker() : super_type() {}
unique_checker(const unique_checker &other) : super_type(other) {}
template <class InputIterator>
unique_checker(InputIterator b, InputIterator e) : super_type(b, e) {}
unique_checker &operator=(const unique_checker &) = default;
// Insertion routines.
std::pair<iterator, bool> insert(const value_type &v) {
int size = this->tree_.size();
std::pair<typename CheckerType::iterator, bool> checker_res =
this->checker_.insert(v);
std::pair<iterator, bool> tree_res = this->tree_.insert(v);
CheckPairEquals(*tree_res.first, *checker_res.first);
EXPECT_EQ(tree_res.second, checker_res.second);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + tree_res.second);
return tree_res;
}
iterator insert(iterator position, const value_type &v) {
int size = this->tree_.size();
std::pair<typename CheckerType::iterator, bool> checker_res =
this->checker_.insert(v);
iterator tree_res = this->tree_.insert(position, v);
CheckPairEquals(*tree_res, *checker_res.first);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + checker_res.second);
return tree_res;
}
template <typename InputIterator>
void insert(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert(*b);
}
}
};
// A checker for multiple sorted associative containers. TreeType is expected
// to be btree_{multiset,multimap} and CheckerType is expected to be
// {multiset,multimap}.
template <typename TreeType, typename CheckerType>
class multi_checker : public base_checker<TreeType, CheckerType> {
using super_type = base_checker<TreeType, CheckerType>;
public:
using iterator = typename super_type::iterator;
using value_type = typename super_type::value_type;
public:
multi_checker() : super_type() {}
multi_checker(const multi_checker &other) : super_type(other) {}
template <class InputIterator>
multi_checker(InputIterator b, InputIterator e) : super_type(b, e) {}
multi_checker &operator=(const multi_checker &) = default;
// Insertion routines.
iterator insert(const value_type &v) {
int size = this->tree_.size();
auto checker_res = this->checker_.insert(v);
iterator tree_res = this->tree_.insert(v);
CheckPairEquals(*tree_res, *checker_res);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + 1);
return tree_res;
}
iterator insert(iterator position, const value_type &v) {
int size = this->tree_.size();
auto checker_res = this->checker_.insert(v);
iterator tree_res = this->tree_.insert(position, v);
CheckPairEquals(*tree_res, *checker_res);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + 1);
return tree_res;
}
template <typename InputIterator>
void insert(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert(*b);
}
}
};
template <typename T, typename V>
void DoTest(const char *name, T *b, const std::vector<V> &values) {
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
T &mutable_b = *b;
const T &const_b = *b;
// Test insert.
for (int i = 0; i < values.size(); ++i) {
mutable_b.insert(values[i]);
mutable_b.value_check(values[i]);
}
ASSERT_EQ(mutable_b.size(), values.size());
const_b.verify();
// Test copy constructor.
T b_copy(const_b);
EXPECT_EQ(b_copy.size(), const_b.size());
for (int i = 0; i < values.size(); ++i) {
CheckPairEquals(*b_copy.find(key_of_value(values[i])), values[i]);
}
// Test range constructor.
T b_range(const_b.begin(), const_b.end());
EXPECT_EQ(b_range.size(), const_b.size());
for (int i = 0; i < values.size(); ++i) {
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
}
// Test range insertion for values that already exist.
b_range.insert(b_copy.begin(), b_copy.end());
b_range.verify();
// Test range insertion for new values.
b_range.clear();
b_range.insert(b_copy.begin(), b_copy.end());
EXPECT_EQ(b_range.size(), b_copy.size());
for (int i = 0; i < values.size(); ++i) {
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
}
// Test assignment to self. Nothing should change.
b_range.operator=(b_range);
EXPECT_EQ(b_range.size(), b_copy.size());
// Test assignment of new values.
b_range.clear();
b_range = b_copy;
EXPECT_EQ(b_range.size(), b_copy.size());
// Test swap.
b_range.clear();
b_range.swap(b_copy);
EXPECT_EQ(b_copy.size(), 0);
EXPECT_EQ(b_range.size(), const_b.size());
for (int i = 0; i < values.size(); ++i) {
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
}
b_range.swap(b_copy);
// Test non-member function swap.
swap(b_range, b_copy);
EXPECT_EQ(b_copy.size(), 0);
EXPECT_EQ(b_range.size(), const_b.size());
for (int i = 0; i < values.size(); ++i) {
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
}
swap(b_range, b_copy);
// Test erase via values.
for (int i = 0; i < values.size(); ++i) {
mutable_b.erase(key_of_value(values[i]));
// Erasing a non-existent key should have no effect.
ASSERT_EQ(mutable_b.erase(key_of_value(values[i])), 0);
}
const_b.verify();
EXPECT_EQ(const_b.size(), 0);
// Test erase via iterators.
mutable_b = b_copy;
for (int i = 0; i < values.size(); ++i) {
mutable_b.erase(mutable_b.find(key_of_value(values[i])));
}
const_b.verify();
EXPECT_EQ(const_b.size(), 0);
// Test insert with hint.
for (int i = 0; i < values.size(); i++) {
mutable_b.insert(mutable_b.upper_bound(key_of_value(values[i])), values[i]);
}
const_b.verify();
// Test range erase.
mutable_b.erase(mutable_b.begin(), mutable_b.end());
EXPECT_EQ(mutable_b.size(), 0);
const_b.verify();
// First half.
mutable_b = b_copy;
typename T::iterator mutable_iter_end = mutable_b.begin();
for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_end;
mutable_b.erase(mutable_b.begin(), mutable_iter_end);
EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 2);
const_b.verify();
// Second half.
mutable_b = b_copy;
typename T::iterator mutable_iter_begin = mutable_b.begin();
for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_begin;
mutable_b.erase(mutable_iter_begin, mutable_b.end());
EXPECT_EQ(mutable_b.size(), values.size() / 2);
const_b.verify();
// Second quarter.
mutable_b = b_copy;
mutable_iter_begin = mutable_b.begin();
for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_begin;
mutable_iter_end = mutable_iter_begin;
for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_end;
mutable_b.erase(mutable_iter_begin, mutable_iter_end);
EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 4);
const_b.verify();
mutable_b.clear();
}
template <typename T>
void ConstTest() {
using value_type = typename T::value_type;
typename KeyOfValue<typename T::key_type, value_type>::type key_of_value;
T mutable_b;
const T &const_b = mutable_b;
// Insert a single value into the container and test looking it up.
value_type value = Generator<value_type>(2)(2);
mutable_b.insert(value);
EXPECT_TRUE(mutable_b.contains(key_of_value(value)));
EXPECT_NE(mutable_b.find(key_of_value(value)), const_b.end());
EXPECT_TRUE(const_b.contains(key_of_value(value)));
EXPECT_NE(const_b.find(key_of_value(value)), mutable_b.end());
EXPECT_EQ(*const_b.lower_bound(key_of_value(value)), value);
EXPECT_EQ(const_b.upper_bound(key_of_value(value)), const_b.end());
EXPECT_EQ(*const_b.equal_range(key_of_value(value)).first, value);
// We can only create a non-const iterator from a non-const container.
typename T::iterator mutable_iter(mutable_b.begin());
EXPECT_EQ(mutable_iter, const_b.begin());
EXPECT_NE(mutable_iter, const_b.end());
EXPECT_EQ(const_b.begin(), mutable_iter);
EXPECT_NE(const_b.end(), mutable_iter);
typename T::reverse_iterator mutable_riter(mutable_b.rbegin());
EXPECT_EQ(mutable_riter, const_b.rbegin());
EXPECT_NE(mutable_riter, const_b.rend());
EXPECT_EQ(const_b.rbegin(), mutable_riter);
EXPECT_NE(const_b.rend(), mutable_riter);
// We can create a const iterator from a non-const iterator.
typename T::const_iterator const_iter(mutable_iter);
EXPECT_EQ(const_iter, mutable_b.begin());
EXPECT_NE(const_iter, mutable_b.end());
EXPECT_EQ(mutable_b.begin(), const_iter);
EXPECT_NE(mutable_b.end(), const_iter);
typename T::const_reverse_iterator const_riter(mutable_riter);
EXPECT_EQ(const_riter, mutable_b.rbegin());
EXPECT_NE(const_riter, mutable_b.rend());
EXPECT_EQ(mutable_b.rbegin(), const_riter);
EXPECT_NE(mutable_b.rend(), const_riter);
// Make sure various methods can be invoked on a const container.
const_b.verify();
ASSERT_TRUE(!const_b.empty());
EXPECT_EQ(const_b.size(), 1);
EXPECT_GT(const_b.max_size(), 0);
EXPECT_TRUE(const_b.contains(key_of_value(value)));
EXPECT_EQ(const_b.count(key_of_value(value)), 1);
}
template <typename T, typename C>
void BtreeTest() {
ConstTest<T>();
using V = typename remove_pair_const<typename T::value_type>::type;
const std::vector<V> random_values = GenerateValuesWithSeed<V>(
absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values),
GTEST_FLAG_GET(random_seed));
unique_checker<T, C> container;
// Test key insertion/deletion in sorted order.
std::vector<V> sorted_values(random_values);
std::sort(sorted_values.begin(), sorted_values.end());
DoTest("sorted: ", &container, sorted_values);
// Test key insertion/deletion in reverse sorted order.
std::reverse(sorted_values.begin(), sorted_values.end());
DoTest("rsorted: ", &container, sorted_values);
// Test key insertion/deletion in random order.
DoTest("random: ", &container, random_values);
}
template <typename T, typename C>
void BtreeMultiTest() {
ConstTest<T>();
using V = typename remove_pair_const<typename T::value_type>::type;
const std::vector<V> random_values = GenerateValuesWithSeed<V>(
absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values),
GTEST_FLAG_GET(random_seed));
multi_checker<T, C> container;
// Test keys in sorted order.
std::vector<V> sorted_values(random_values);
std::sort(sorted_values.begin(), sorted_values.end());
DoTest("sorted: ", &container, sorted_values);
// Test keys in reverse sorted order.
std::reverse(sorted_values.begin(), sorted_values.end());
DoTest("rsorted: ", &container, sorted_values);
// Test keys in random order.
DoTest("random: ", &container, random_values);
// Test keys in random order w/ duplicates.
std::vector<V> duplicate_values(random_values);
duplicate_values.insert(duplicate_values.end(), random_values.begin(),
random_values.end());
DoTest("duplicates:", &container, duplicate_values);
// Test all identical keys.
std::vector<V> identical_values(100);
std::fill(identical_values.begin(), identical_values.end(),
Generator<V>(2)(2));
DoTest("identical: ", &container, identical_values);
}
template <typename T>
void BtreeMapTest() {
using value_type = typename T::value_type;
using mapped_type = typename T::mapped_type;
mapped_type m = Generator<mapped_type>(0)(0);
(void)m;
T b;
// Verify we can insert using operator[].
for (int i = 0; i < 1000; i++) {
value_type v = Generator<value_type>(1000)(i);
b[v.first] = v.second;
}
EXPECT_EQ(b.size(), 1000);
// Test whether we can use the "->" operator on iterators and
// reverse_iterators. This stresses the btree_map_params::pair_pointer
// mechanism.
EXPECT_EQ(b.begin()->first, Generator<value_type>(1000)(0).first);
EXPECT_EQ(b.begin()->second, Generator<value_type>(1000)(0).second);
EXPECT_EQ(b.rbegin()->first, Generator<value_type>(1000)(999).first);
EXPECT_EQ(b.rbegin()->second, Generator<value_type>(1000)(999).second);
}
template <typename T>
void BtreeMultiMapTest() {
using mapped_type = typename T::mapped_type;
mapped_type m = Generator<mapped_type>(0)(0);
(void)m;
}
template <typename K, int N = 256>
void SetTest() {
EXPECT_EQ(
sizeof(absl::btree_set<K>),
2 * sizeof(void *) + sizeof(typename absl::btree_set<K>::size_type));
using BtreeSet = absl::btree_set<K>;
BtreeTest<BtreeSet, std::set<K>>();
}
template <typename K, int N = 256>
void MapTest() {
EXPECT_EQ(
sizeof(absl::btree_map<K, K>),
2 * sizeof(void *) + sizeof(typename absl::btree_map<K, K>::size_type));
using BtreeMap = absl::btree_map<K, K>;
BtreeTest<BtreeMap, std::map<K, K>>();
BtreeMapTest<BtreeMap>();
}
TEST(Btree, set_int32) { SetTest<int32_t>(); }
TEST(Btree, set_string) { SetTest<std::string>(); }
TEST(Btree, set_cord) { SetTest<absl::Cord>(); }
TEST(Btree, map_int32) { MapTest<int32_t>(); }
TEST(Btree, map_string) { MapTest<std::string>(); }
TEST(Btree, map_cord) { MapTest<absl::Cord>(); }
template <typename K, int N = 256>
void MultiSetTest() {
EXPECT_EQ(
sizeof(absl::btree_multiset<K>),
2 * sizeof(void *) + sizeof(typename absl::btree_multiset<K>::size_type));
using BtreeMSet = absl::btree_multiset<K>;
BtreeMultiTest<BtreeMSet, std::multiset<K>>();
}
template <typename K, int N = 256>
void MultiMapTest() {
EXPECT_EQ(sizeof(absl::btree_multimap<K, K>),
2 * sizeof(void *) +
sizeof(typename absl::btree_multimap<K, K>::size_type));
using BtreeMMap = absl::btree_multimap<K, K>;
BtreeMultiTest<BtreeMMap, std::multimap<K, K>>();
BtreeMultiMapTest<BtreeMMap>();
}
TEST(Btree, multiset_int32) { MultiSetTest<int32_t>(); }
TEST(Btree, multiset_string) { MultiSetTest<std::string>(); }
TEST(Btree, multiset_cord) { MultiSetTest<absl::Cord>(); }
TEST(Btree, multimap_int32) { MultiMapTest<int32_t>(); }
TEST(Btree, multimap_string) { MultiMapTest<std::string>(); }
TEST(Btree, multimap_cord) { MultiMapTest<absl::Cord>(); }
struct CompareIntToString {
bool operator()(const std::string &a, const std::string &b) const {
return a < b;
}
bool operator()(const std::string &a, int b) const {
return a < absl::StrCat(b);
}
bool operator()(int a, const std::string &b) const {
return absl::StrCat(a) < b;
}
using is_transparent = void;
};
struct NonTransparentCompare {
template <typename T, typename U>
bool operator()(const T &t, const U &u) const {
// Treating all comparators as transparent can cause inefficiencies (see
// N3657 C++ proposal). Test that for comparators without 'is_transparent'
// alias (like this one), we do not attempt heterogeneous lookup.
EXPECT_TRUE((std::is_same<T, U>()));
return t < u;
}
};
template <typename T>
bool CanEraseWithEmptyBrace(T t, decltype(t.erase({})) *) {
return true;
}
template <typename T>
bool CanEraseWithEmptyBrace(T, ...) {
return false;
}
template <typename T>
void TestHeterogeneous(T table) {
auto lb = table.lower_bound("3");
EXPECT_EQ(lb, table.lower_bound(3));
EXPECT_NE(lb, table.lower_bound(4));
EXPECT_EQ(lb, table.lower_bound({"3"}));
EXPECT_NE(lb, table.lower_bound({}));
auto ub = table.upper_bound("3");
EXPECT_EQ(ub, table.upper_bound(3));
EXPECT_NE(ub, table.upper_bound(5));
EXPECT_EQ(ub, table.upper_bound({"3"}));
EXPECT_NE(ub, table.upper_bound({}));
auto er = table.equal_range("3");
EXPECT_EQ(er, table.equal_range(3));
EXPECT_NE(er, table.equal_range(4));
EXPECT_EQ(er, table.equal_range({"3"}));
EXPECT_NE(er, table.equal_range({}));
auto it = table.find("3");
EXPECT_EQ(it, table.find(3));
EXPECT_NE(it, table.find(4));
EXPECT_EQ(it, table.find({"3"}));
EXPECT_NE(it, table.find({}));
EXPECT_TRUE(table.contains(3));
EXPECT_FALSE(table.contains(4));
EXPECT_TRUE(table.count({"3"}));
EXPECT_FALSE(table.contains({}));
EXPECT_EQ(1, table.count(3));
EXPECT_EQ(0, table.count(4));
EXPECT_EQ(1, table.count({"3"}));
EXPECT_EQ(0, table.count({}));
auto copy = table;
copy.erase(3);
EXPECT_EQ(table.size() - 1, copy.size());
copy.erase(4);
EXPECT_EQ(table.size() - 1, copy.size());
copy.erase({"5"});
EXPECT_EQ(table.size() - 2, copy.size());
EXPECT_FALSE(CanEraseWithEmptyBrace(table, nullptr));
// Also run it with const T&.
if (std::is_class<T>()) TestHeterogeneous<const T &>(table);
}
TEST(Btree, HeterogeneousLookup) {
TestHeterogeneous(btree_set<std::string, CompareIntToString>{"1", "3", "5"});
TestHeterogeneous(btree_map<std::string, int, CompareIntToString>{
{"1", 1}, {"3", 3}, {"5", 5}});
TestHeterogeneous(
btree_multiset<std::string, CompareIntToString>{"1", "3", "5"});
TestHeterogeneous(btree_multimap<std::string, int, CompareIntToString>{
{"1", 1}, {"3", 3}, {"5", 5}});
// Only maps have .at()
btree_map<std::string, int, CompareIntToString> map{
{"", -1}, {"1", 1}, {"3", 3}, {"5", 5}};
EXPECT_EQ(1, map.at(1));
EXPECT_EQ(3, map.at({"3"}));
EXPECT_EQ(-1, map.at({}));
const auto &cmap = map;
EXPECT_EQ(1, cmap.at(1));
EXPECT_EQ(3, cmap.at({"3"}));
EXPECT_EQ(-1, cmap.at({}));
}
TEST(Btree, NoHeterogeneousLookupWithoutAlias) {
using StringSet = absl::btree_set<std::string, NonTransparentCompare>;
StringSet s;
ASSERT_TRUE(s.insert("hello").second);
ASSERT_TRUE(s.insert("world").second);
EXPECT_TRUE(s.end() == s.find("blah"));
EXPECT_TRUE(s.begin() == s.lower_bound("hello"));
EXPECT_EQ(1, s.count("world"));
EXPECT_TRUE(s.contains("hello"));
EXPECT_TRUE(s.contains("world"));
EXPECT_FALSE(s.contains("blah"));
using StringMultiSet =
absl::btree_multiset<std::string, NonTransparentCompare>;
StringMultiSet ms;
ms.insert("hello");
ms.insert("world");
ms.insert("world");
EXPECT_TRUE(ms.end() == ms.find("blah"));
EXPECT_TRUE(ms.begin() == ms.lower_bound("hello"));
EXPECT_EQ(2, ms.count("world"));
EXPECT_TRUE(ms.contains("hello"));
EXPECT_TRUE(ms.contains("world"));
EXPECT_FALSE(ms.contains("blah"));
}
TEST(Btree, DefaultTransparent) {
{
// `int` does not have a default transparent comparator.
// The input value is converted to key_type.
btree_set<int> s = {1};
double d = 1.1;
EXPECT_EQ(s.begin(), s.find(d));
EXPECT_TRUE(s.contains(d));
}
{
// `std::string` has heterogeneous support.
btree_set<std::string> s = {"A"};
EXPECT_EQ(s.begin(), s.find(absl::string_view("A")));
EXPECT_TRUE(s.contains(absl::string_view("A")));
}
}
class StringLike {
public:
StringLike() = default;
StringLike(const char *s) : s_(s) { // NOLINT
++constructor_calls_;
}
bool operator<(const StringLike &a) const { return s_ < a.s_; }
static void clear_constructor_call_count() { constructor_calls_ = 0; }
static int constructor_calls() { return constructor_calls_; }
private:
static int constructor_calls_;
std::string s_;
};
int StringLike::constructor_calls_ = 0;
TEST(Btree, HeterogeneousLookupDoesntDegradePerformance) {
using StringSet = absl::btree_set<StringLike>;
StringSet s;
for (int i = 0; i < 100; ++i) {
ASSERT_TRUE(s.insert(absl::StrCat(i).c_str()).second);
}
StringLike::clear_constructor_call_count();
s.find("50");
ASSERT_EQ(1, StringLike::constructor_calls());
StringLike::clear_constructor_call_count();
s.contains("50");
ASSERT_EQ(1, StringLike::constructor_calls());
StringLike::clear_constructor_call_count();
s.count("50");
ASSERT_EQ(1, StringLike::constructor_calls());
StringLike::clear_constructor_call_count();
s.lower_bound("50");
ASSERT_EQ(1, StringLike::constructor_calls());
StringLike::clear_constructor_call_count();
s.upper_bound("50");
ASSERT_EQ(1, StringLike::constructor_calls());
StringLike::clear_constructor_call_count();
s.equal_range("50");
ASSERT_EQ(1, StringLike::constructor_calls());
StringLike::clear_constructor_call_count();
s.erase("50");
ASSERT_EQ(1, StringLike::constructor_calls());
}
// Verify that swapping btrees swaps the key comparison functors and that we can
// use non-default constructible comparators.
struct SubstringLess {
SubstringLess() = delete;
explicit SubstringLess(int length) : n(length) {}
bool operator()(const std::string &a, const std::string &b) const {
return absl::string_view(a).substr(0, n) <
absl::string_view(b).substr(0, n);
}
int n;
};
TEST(Btree, SwapKeyCompare) {
using SubstringSet = absl::btree_set<std::string, SubstringLess>;
SubstringSet s1(SubstringLess(1), SubstringSet::allocator_type());
SubstringSet s2(SubstringLess(2), SubstringSet::allocator_type());
ASSERT_TRUE(s1.insert("a").second);
ASSERT_FALSE(s1.insert("aa").second);
ASSERT_TRUE(s2.insert("a").second);
ASSERT_TRUE(s2.insert("aa").second);
ASSERT_FALSE(s2.insert("aaa").second);
swap(s1, s2);
ASSERT_TRUE(s1.insert("b").second);
ASSERT_TRUE(s1.insert("bb").second);
ASSERT_FALSE(s1.insert("bbb").second);
ASSERT_TRUE(s2.insert("b").second);
ASSERT_FALSE(s2.insert("bb").second);
}
TEST(Btree, UpperBoundRegression) {
// Regress a bug where upper_bound would default-construct a new key_compare
// instead of copying the existing one.
using SubstringSet = absl::btree_set<std::string, SubstringLess>;
SubstringSet my_set(SubstringLess(3));
my_set.insert("aab");
my_set.insert("abb");
// We call upper_bound("aaa"). If this correctly uses the length 3
// comparator, aaa < aab < abb, so we should get aab as the result.
// If it instead uses the default-constructed length 2 comparator,
// aa == aa < ab, so we'll get abb as our result.
SubstringSet::iterator it = my_set.upper_bound("aaa");
ASSERT_TRUE(it != my_set.end());
EXPECT_EQ("aab", *it);
}
TEST(Btree, Comparison) {
const int kSetSize = 1201;
absl::btree_set<int64_t> my_set;
for (int i = 0; i < kSetSize; ++i) {
my_set.insert(i);
}
absl::btree_set<int64_t> my_set_copy(my_set);
EXPECT_TRUE(my_set_copy == my_set);
EXPECT_TRUE(my_set == my_set_copy);
EXPECT_FALSE(my_set_copy != my_set);
EXPECT_FALSE(my_set != my_set_copy);
my_set.insert(kSetSize);
EXPECT_FALSE(my_set_copy == my_set);
EXPECT_FALSE(my_set == my_set_copy);
EXPECT_TRUE(my_set_copy != my_set);
EXPECT_TRUE(my_set != my_set_copy);
my_set.erase(kSetSize - 1);
EXPECT_FALSE(my_set_copy == my_set);
EXPECT_FALSE(my_set == my_set_copy);
EXPECT_TRUE(my_set_copy != my_set);
EXPECT_TRUE(my_set != my_set_copy);
absl::btree_map<std::string, int64_t> my_map;
for (int i = 0; i < kSetSize; ++i) {
my_map[std::string(i, 'a')] = i;
}
absl::btree_map<std::string, int64_t> my_map_copy(my_map);
EXPECT_TRUE(my_map_copy == my_map);
EXPECT_TRUE(my_map == my_map_copy);
EXPECT_FALSE(my_map_copy != my_map);
EXPECT_FALSE(my_map != my_map_copy);
++my_map_copy[std::string(7, 'a')];
EXPECT_FALSE(my_map_copy == my_map);
EXPECT_FALSE(my_map == my_map_copy);
EXPECT_TRUE(my_map_copy != my_map);
EXPECT_TRUE(my_map != my_map_copy);
my_map_copy = my_map;
my_map["hello"] = kSetSize;
EXPECT_FALSE(my_map_copy == my_map);
EXPECT_FALSE(my_map == my_map_copy);
EXPECT_TRUE(my_map_copy != my_map);
EXPECT_TRUE(my_map != my_map_copy);
my_map.erase(std::string(kSetSize - 1, 'a'));
EXPECT_FALSE(my_map_copy == my_map);
EXPECT_FALSE(my_map == my_map_copy);
EXPECT_TRUE(my_map_copy != my_map);
EXPECT_TRUE(my_map != my_map_copy);
}
TEST(Btree, RangeCtorSanity) {
std::vector<int> ivec;
ivec.push_back(1);
std::map<int, int> imap;
imap.insert(std::make_pair(1, 2));
absl::btree_multiset<int> tmset(ivec.begin(), ivec.end());
absl::btree_multimap<int, int> tmmap(imap.begin(), imap.end());
absl::btree_set<int> tset(ivec.begin(), ivec.end());
absl::btree_map<int, int> tmap(imap.begin(), imap.end());
EXPECT_EQ(1, tmset.size());
EXPECT_EQ(1, tmmap.size());
EXPECT_EQ(1, tset.size());
EXPECT_EQ(1, tmap.size());
}
} // namespace
class BtreeNodePeer {
public:
// Yields the size of a leaf node with a specific number of values.
template <typename ValueType>
constexpr static size_t GetTargetNodeSize(size_t target_values_per_node) {
return btree_node<
set_params<ValueType, std::less<ValueType>, std::allocator<ValueType>,
/*TargetNodeSize=*/256, // This parameter isn't used here.
/*Multi=*/false>>::SizeWithNSlots(target_values_per_node);
}
// Yields the number of slots in a (non-root) leaf node for this btree.
template <typename Btree>
constexpr static size_t GetNumSlotsPerNode() {
return btree_node<typename Btree::params_type>::kNodeSlots;
}
template <typename Btree>
constexpr static size_t GetMaxFieldType() {
return std::numeric_limits<
typename btree_node<typename Btree::params_type>::field_type>::max();
}
template <typename Btree>
constexpr static bool UsesLinearNodeSearch() {
return btree_node<typename Btree::params_type>::use_linear_search::value;
}
template <typename Btree>
constexpr static bool FieldTypeEqualsSlotType() {
return std::is_same<
typename btree_node<typename Btree::params_type>::field_type,
typename btree_node<typename Btree::params_type>::slot_type>::value;
}
};
namespace {
class BtreeMapTest : public ::testing::Test {
public:
struct Key {};
struct Cmp {
template <typename T>
bool operator()(T, T) const {
return false;
}
};
struct KeyLin {
using absl_btree_prefer_linear_node_search = std::true_type;
};
struct CmpLin : Cmp {
using absl_btree_prefer_linear_node_search = std::true_type;
};
struct KeyBin {
using absl_btree_prefer_linear_node_search = std::false_type;
};
struct CmpBin : Cmp {
using absl_btree_prefer_linear_node_search = std::false_type;
};
template <typename K, typename C>
static bool IsLinear() {
return BtreeNodePeer::UsesLinearNodeSearch<absl::btree_map<K, int, C>>();
}
};
TEST_F(BtreeMapTest, TestLinearSearchPreferredForKeyLinearViaAlias) {
// Test requesting linear search by directly exporting an alias.
EXPECT_FALSE((IsLinear<Key, Cmp>()));
EXPECT_TRUE((IsLinear<KeyLin, Cmp>()));
EXPECT_TRUE((IsLinear<Key, CmpLin>()));
EXPECT_TRUE((IsLinear<KeyLin, CmpLin>()));
}
TEST_F(BtreeMapTest, LinearChoiceTree) {
// Cmp has precedence, and is forcing binary
EXPECT_FALSE((IsLinear<Key, CmpBin>()));
EXPECT_FALSE((IsLinear<KeyLin, CmpBin>()));
EXPECT_FALSE((IsLinear<KeyBin, CmpBin>()));
EXPECT_FALSE((IsLinear<int, CmpBin>()));
EXPECT_FALSE((IsLinear<std::string, CmpBin>()));
// Cmp has precedence, and is forcing linear
EXPECT_TRUE((IsLinear<Key, CmpLin>()));
EXPECT_TRUE((IsLinear<KeyLin, CmpLin>()));
EXPECT_TRUE((IsLinear<KeyBin, CmpLin>()));
EXPECT_TRUE((IsLinear<int, CmpLin>()));
EXPECT_TRUE((IsLinear<std::string, CmpLin>()));
// Cmp has no preference, Key determines linear vs binary.
EXPECT_FALSE((IsLinear<Key, Cmp>()));
EXPECT_TRUE((IsLinear<KeyLin, Cmp>()));
EXPECT_FALSE((IsLinear<KeyBin, Cmp>()));
// arithmetic key w/ std::less or std::greater: linear
EXPECT_TRUE((IsLinear<int, std::less<int>>()));
EXPECT_TRUE((IsLinear<double, std::greater<double>>()));
// arithmetic key w/ custom compare: binary
EXPECT_FALSE((IsLinear<int, Cmp>()));
// non-arithmetic key: binary
EXPECT_FALSE((IsLinear<std::string, std::less<std::string>>()));
}
TEST(Btree, BtreeMapCanHoldMoveOnlyTypes) {
absl::btree_map<std::string, std::unique_ptr<std::string>> m;
std::unique_ptr<std::string> &v = m["A"];
EXPECT_TRUE(v == nullptr);
v = absl::make_unique<std::string>("X");
auto iter = m.find("A");
EXPECT_EQ("X", *iter->second);
}
TEST(Btree, InitializerListConstructor) {
absl::btree_set<std::string> set({"a", "b"});
EXPECT_EQ(set.count("a"), 1);
EXPECT_EQ(set.count("b"), 1);
absl::btree_multiset<int> mset({1, 1, 4});
EXPECT_EQ(mset.count(1), 2);
EXPECT_EQ(mset.count(4), 1);
absl::btree_map<int, int> map({{1, 5}, {2, 10}});
EXPECT_EQ(map[1], 5);
EXPECT_EQ(map[2], 10);
absl::btree_multimap<int, int> mmap({{1, 5}, {1, 10}});
auto range = mmap.equal_range(1);
auto it = range.first;
ASSERT_NE(it, range.second);
EXPECT_EQ(it->second, 5);
ASSERT_NE(++it, range.second);
EXPECT_EQ(it->second, 10);
EXPECT_EQ(++it, range.second);
}
TEST(Btree, InitializerListInsert) {
absl::btree_set<std::string> set;
set.insert({"a", "b"});
EXPECT_EQ(set.count("a"), 1);
EXPECT_EQ(set.count("b"), 1);
absl::btree_multiset<int> mset;
mset.insert({1, 1, 4});
EXPECT_EQ(mset.count(1), 2);
EXPECT_EQ(mset.count(4), 1);
absl::btree_map<int, int> map;
map.insert({{1, 5}, {2, 10}});
// Test that inserting one element using an initializer list also works.
map.insert({3, 15});
EXPECT_EQ(map[1], 5);
EXPECT_EQ(map[2], 10);
EXPECT_EQ(map[3], 15);
absl::btree_multimap<int, int> mmap;
mmap.insert({{1, 5}, {1, 10}});
auto range = mmap.equal_range(1);
auto it = range.first;
ASSERT_NE(it, range.second);
EXPECT_EQ(it->second, 5);
ASSERT_NE(++it, range.second);
EXPECT_EQ(it->second, 10);
EXPECT_EQ(++it, range.second);
}
template <typename Compare, typename Key>
void AssertKeyCompareStringAdapted() {
using Adapted = typename key_compare_adapter<Compare, Key>::type;
static_assert(
std::is_same<Adapted, StringBtreeDefaultLess>::value ||
std::is_same<Adapted, StringBtreeDefaultGreater>::value,
"key_compare_adapter should have string-adapted this comparator.");
}
template <typename Compare, typename Key>
void AssertKeyCompareNotStringAdapted() {
using Adapted = typename key_compare_adapter<Compare, Key>::type;
static_assert(
!std::is_same<Adapted, StringBtreeDefaultLess>::value &&
!std::is_same<Adapted, StringBtreeDefaultGreater>::value,
"key_compare_adapter shouldn't have string-adapted this comparator.");
}
TEST(Btree, KeyCompareAdapter) {
AssertKeyCompareStringAdapted<std::less<std::string>, std::string>();
AssertKeyCompareStringAdapted<std::greater<std::string>, std::string>();
AssertKeyCompareStringAdapted<std::less<absl::string_view>,
absl::string_view>();
AssertKeyCompareStringAdapted<std::greater<absl::string_view>,
absl::string_view>();
AssertKeyCompareStringAdapted<std::less<absl::Cord>, absl::Cord>();
AssertKeyCompareStringAdapted<std::greater<absl::Cord>, absl::Cord>();
AssertKeyCompareNotStringAdapted<std::less<int>, int>();
AssertKeyCompareNotStringAdapted<std::greater<int>, int>();
}
TEST(Btree, RValueInsert) {
InstanceTracker tracker;
absl::btree_set<MovableOnlyInstance> set;
set.insert(MovableOnlyInstance(1));
set.insert(MovableOnlyInstance(3));
MovableOnlyInstance two(2);
set.insert(set.find(MovableOnlyInstance(3)), std::move(two));
auto it = set.find(MovableOnlyInstance(2));
ASSERT_NE(it, set.end());
ASSERT_NE(++it, set.end());
EXPECT_EQ(it->value(), 3);
absl::btree_multiset<MovableOnlyInstance> mset;
MovableOnlyInstance zero(0);
MovableOnlyInstance zero2(0);
mset.insert(std::move(zero));
mset.insert(mset.find(MovableOnlyInstance(0)), std::move(zero2));
EXPECT_EQ(mset.count(MovableOnlyInstance(0)), 2);
absl::btree_map<int, MovableOnlyInstance> map;
std::pair<const int, MovableOnlyInstance> p1 = {1, MovableOnlyInstance(5)};
std::pair<const int, MovableOnlyInstance> p2 = {2, MovableOnlyInstance(10)};
std::pair<const int, MovableOnlyInstance> p3 = {3, MovableOnlyInstance(15)};
map.insert(std::move(p1));
map.insert(std::move(p3));
map.insert(map.find(3), std::move(p2));
ASSERT_NE(map.find(2), map.end());
EXPECT_EQ(map.find(2)->second.value(), 10);
absl::btree_multimap<int, MovableOnlyInstance> mmap;
std::pair<const int, MovableOnlyInstance> p4 = {1, MovableOnlyInstance(5)};
std::pair<const int, MovableOnlyInstance> p5 = {1, MovableOnlyInstance(10)};
mmap.insert(std::move(p4));
mmap.insert(mmap.find(1), std::move(p5));
auto range = mmap.equal_range(1);
auto it1 = range.first;
ASSERT_NE(it1, range.second);
EXPECT_EQ(it1->second.value(), 10);
ASSERT_NE(++it1, range.second);
EXPECT_EQ(it1->second.value(), 5);
EXPECT_EQ(++it1, range.second);
EXPECT_EQ(tracker.copies(), 0);
EXPECT_EQ(tracker.swaps(), 0);
}
template <typename Cmp>
struct CheckedCompareOptedOutCmp : Cmp, BtreeTestOnlyCheckedCompareOptOutBase {
using Cmp::Cmp;
CheckedCompareOptedOutCmp() {}
CheckedCompareOptedOutCmp(Cmp cmp) : Cmp(std::move(cmp)) {} // NOLINT
};
// A btree set with a specific number of values per node. Opt out of
// checked_compare so that we can expect exact numbers of comparisons.
template <typename Key, int TargetValuesPerNode, typename Cmp = std::less<Key>>
class SizedBtreeSet
: public btree_set_container<btree<
set_params<Key, CheckedCompareOptedOutCmp<Cmp>, std::allocator<Key>,
BtreeNodePeer::GetTargetNodeSize<Key>(TargetValuesPerNode),
/*Multi=*/false>>> {
using Base = typename SizedBtreeSet::btree_set_container;
public:
SizedBtreeSet() = default;
using Base::Base;
};
template <typename Set>
void ExpectOperationCounts(const int expected_moves,
const int expected_comparisons,
const std::vector<int> &values,
InstanceTracker *tracker, Set *set) {
for (const int v : values) set->insert(MovableOnlyInstance(v));
set->clear();
EXPECT_EQ(tracker->moves(), expected_moves);
EXPECT_EQ(tracker->comparisons(), expected_comparisons);
EXPECT_EQ(tracker->copies(), 0);
EXPECT_EQ(tracker->swaps(), 0);
tracker->ResetCopiesMovesSwaps();
}
#if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
defined(ABSL_HAVE_HWADDRESS_SANITIZER)
constexpr bool kAsan = true;
#else
constexpr bool kAsan = false;
#endif
// Note: when the values in this test change, it is expected to have an impact
// on performance.
TEST(Btree, MovesComparisonsCopiesSwapsTracking) {
if (kAsan) GTEST_SKIP() << "We do extra operations in ASan mode.";
InstanceTracker tracker;
// Note: this is minimum number of values per node.
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/4> set4;
// Note: this is the default number of values per node for a set of int32s
// (with 64-bit pointers).
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61> set61;
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100> set100;
// Don't depend on flags for random values because then the expectations will
// fail if the flags change.
std::vector<int> values =
GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23);
EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set4)>(), 4);
EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set61)>(), 61);
EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set100)>(), 100);
if (sizeof(void *) == 8) {
EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<absl::btree_set<int32_t>>(),
// When we have generations, there is one fewer slot.
BtreeGenerationsEnabled() ? 60 : 61);
}
// Test key insertion/deletion in random order.
ExpectOperationCounts(56540, 134212, values, &tracker, &set4);
ExpectOperationCounts(386718, 129807, values, &tracker, &set61);
ExpectOperationCounts(586761, 130310, values, &tracker, &set100);
// Test key insertion/deletion in sorted order.
std::sort(values.begin(), values.end());
ExpectOperationCounts(24972, 85563, values, &tracker, &set4);
ExpectOperationCounts(20208, 87757, values, &tracker, &set61);
ExpectOperationCounts(20124, 96583, values, &tracker, &set100);
// Test key insertion/deletion in reverse sorted order.
std::reverse(values.begin(), values.end());
ExpectOperationCounts(54949, 127531, values, &tracker, &set4);
ExpectOperationCounts(338813, 118266, values, &tracker, &set61);
ExpectOperationCounts(534529, 125279, values, &tracker, &set100);
}
struct MovableOnlyInstanceThreeWayCompare {
absl::weak_ordering operator()(const MovableOnlyInstance &a,
const MovableOnlyInstance &b) const {
return a.compare(b);
}
};
// Note: when the values in this test change, it is expected to have an impact
// on performance.
TEST(Btree, MovesComparisonsCopiesSwapsTrackingThreeWayCompare) {
if (kAsan) GTEST_SKIP() << "We do extra operations in ASan mode.";
InstanceTracker tracker;
// Note: this is minimum number of values per node.
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/4,
MovableOnlyInstanceThreeWayCompare>
set4;
// Note: this is the default number of values per node for a set of int32s
// (with 64-bit pointers).
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61,
MovableOnlyInstanceThreeWayCompare>
set61;
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100,
MovableOnlyInstanceThreeWayCompare>
set100;
// Don't depend on flags for random values because then the expectations will
// fail if the flags change.
std::vector<int> values =
GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23);
EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set4)>(), 4);
EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set61)>(), 61);
EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set100)>(), 100);
if (sizeof(void *) == 8) {
EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<absl::btree_set<int32_t>>(),
// When we have generations, there is one fewer slot.
BtreeGenerationsEnabled() ? 60 : 61);
}
// Test key insertion/deletion in random order.
ExpectOperationCounts(56540, 124221, values, &tracker, &set4);
ExpectOperationCounts(386718, 119816, values, &tracker, &set61);
ExpectOperationCounts(586761, 120319, values, &tracker, &set100);
// Test key insertion/deletion in sorted order.
std::sort(values.begin(), values.end());
ExpectOperationCounts(24972, 85563, values, &tracker, &set4);
ExpectOperationCounts(20208, 87757, values, &tracker, &set61);
ExpectOperationCounts(20124, 96583, values, &tracker, &set100);
// Test key insertion/deletion in reverse sorted order.
std::reverse(values.begin(), values.end());
ExpectOperationCounts(54949, 117532, values, &tracker, &set4);
ExpectOperationCounts(338813, 108267, values, &tracker, &set61);
ExpectOperationCounts(534529, 115280, values, &tracker, &set100);
}
struct NoDefaultCtor {
int num;
explicit NoDefaultCtor(int i) : num(i) {}
friend bool operator<(const NoDefaultCtor &a, const NoDefaultCtor &b) {
return a.num < b.num;
}
};
TEST(Btree, BtreeMapCanHoldNoDefaultCtorTypes) {
absl::btree_map<NoDefaultCtor, NoDefaultCtor> m;
for (int i = 1; i <= 99; ++i) {
SCOPED_TRACE(i);
EXPECT_TRUE(m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)).second);
}
EXPECT_FALSE(m.emplace(NoDefaultCtor(78), NoDefaultCtor(0)).second);
auto iter99 = m.find(NoDefaultCtor(99));
ASSERT_NE(iter99, m.end());
EXPECT_EQ(iter99->second.num, 1);
auto iter1 = m.find(NoDefaultCtor(1));
ASSERT_NE(iter1, m.end());
EXPECT_EQ(iter1->second.num, 99);
auto iter50 = m.find(NoDefaultCtor(50));
ASSERT_NE(iter50, m.end());
EXPECT_EQ(iter50->second.num, 50);
auto iter25 = m.find(NoDefaultCtor(25));
ASSERT_NE(iter25, m.end());
EXPECT_EQ(iter25->second.num, 75);
}
TEST(Btree, BtreeMultimapCanHoldNoDefaultCtorTypes) {
absl::btree_multimap<NoDefaultCtor, NoDefaultCtor> m;
for (int i = 1; i <= 99; ++i) {
SCOPED_TRACE(i);
m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i));
}
auto iter99 = m.find(NoDefaultCtor(99));
ASSERT_NE(iter99, m.end());
EXPECT_EQ(iter99->second.num, 1);
auto iter1 = m.find(NoDefaultCtor(1));
ASSERT_NE(iter1, m.end());
EXPECT_EQ(iter1->second.num, 99);
auto iter50 = m.find(NoDefaultCtor(50));
ASSERT_NE(iter50, m.end());
EXPECT_EQ(iter50->second.num, 50);
auto iter25 = m.find(NoDefaultCtor(25));
ASSERT_NE(iter25, m.end());
EXPECT_EQ(iter25->second.num, 75);
}
TEST(Btree, MapAt) {
absl::btree_map<int, int> map = {{1, 2}, {2, 4}};
EXPECT_EQ(map.at(1), 2);
EXPECT_EQ(map.at(2), 4);
map.at(2) = 8;
const absl::btree_map<int, int> &const_map = map;
EXPECT_EQ(const_map.at(1), 2);
EXPECT_EQ(const_map.at(2), 8);
#ifdef ABSL_HAVE_EXCEPTIONS
EXPECT_THROW(map.at(3), std::out_of_range);
#else
EXPECT_DEATH_IF_SUPPORTED(map.at(3), "absl::btree_map::at");
#endif
}
TEST(Btree, BtreeMultisetEmplace) {
const int value_to_insert = 123456;
absl::btree_multiset<int> s;
auto iter = s.emplace(value_to_insert);
ASSERT_NE(iter, s.end());
EXPECT_EQ(*iter, value_to_insert);
iter = s.emplace(value_to_insert);
ASSERT_NE(iter, s.end());
EXPECT_EQ(*iter, value_to_insert);
auto result = s.equal_range(value_to_insert);
EXPECT_EQ(std::distance(result.first, result.second), 2);
}
TEST(Btree, BtreeMultisetEmplaceHint) {
const int value_to_insert = 123456;
absl::btree_multiset<int> s;
auto iter = s.emplace(value_to_insert);
ASSERT_NE(iter, s.end());
EXPECT_EQ(*iter, value_to_insert);
iter = s.emplace_hint(iter, value_to_insert);
// The new element should be before the previously inserted one.
EXPECT_EQ(iter, s.lower_bound(value_to_insert));
ASSERT_NE(iter, s.end());
EXPECT_EQ(*iter, value_to_insert);
}
TEST(Btree, BtreeMultimapEmplace) {
const int key_to_insert = 123456;
const char value0[] = "a";
absl::btree_multimap<int, std::string> m;
auto iter = m.emplace(key_to_insert, value0);
ASSERT_NE(iter, m.end());
EXPECT_EQ(iter->first, key_to_insert);
EXPECT_EQ(iter->second, value0);
const char value1[] = "b";
iter = m.emplace(key_to_insert, value1);
ASSERT_NE(iter, m.end());
EXPECT_EQ(iter->first, key_to_insert);
EXPECT_EQ(iter->second, value1);
auto result = m.equal_range(key_to_insert);
EXPECT_EQ(std::distance(result.first, result.second), 2);
}
TEST(Btree, BtreeMultimapEmplaceHint) {
const int key_to_insert = 123456;
const char value0[] = "a";
absl::btree_multimap<int, std::string> m;
auto iter = m.emplace(key_to_insert, value0);
ASSERT_NE(iter, m.end());
EXPECT_EQ(iter->first, key_to_insert);
EXPECT_EQ(iter->second, value0);
const char value1[] = "b";
iter = m.emplace_hint(iter, key_to_insert, value1);
// The new element should be before the previously inserted one.
EXPECT_EQ(iter, m.lower_bound(key_to_insert));
ASSERT_NE(iter, m.end());
EXPECT_EQ(iter->first, key_to_insert);
EXPECT_EQ(iter->second, value1);
}
TEST(Btree, ConstIteratorAccessors) {
absl::btree_set<int> set;
for (int i = 0; i < 100; ++i) {
set.insert(i);
}
auto it = set.cbegin();
auto r_it = set.crbegin();
for (int i = 0; i < 100; ++i, ++it, ++r_it) {
ASSERT_EQ(*it, i);
ASSERT_EQ(*r_it, 99 - i);
}
EXPECT_EQ(it, set.cend());
EXPECT_EQ(r_it, set.crend());
}
TEST(Btree, StrSplitCompatible) {
const absl::btree_set<std::string> split_set = absl::StrSplit("a,b,c", ',');
const absl::btree_set<std::string> expected_set = {"a", "b", "c"};
EXPECT_EQ(split_set, expected_set);
}
TEST(Btree, KeyComp) {
absl::btree_set<int> s;
EXPECT_TRUE(s.key_comp()(1, 2));
EXPECT_FALSE(s.key_comp()(2, 2));
EXPECT_FALSE(s.key_comp()(2, 1));
absl::btree_map<int, int> m1;
EXPECT_TRUE(m1.key_comp()(1, 2));
EXPECT_FALSE(m1.key_comp()(2, 2));
EXPECT_FALSE(m1.key_comp()(2, 1));
// Even though we internally adapt the comparator of `m2` to be three-way and
// heterogeneous, the comparator we expose through key_comp() is the original
// unadapted comparator.
absl::btree_map<std::string, int> m2;
EXPECT_TRUE(m2.key_comp()("a", "b"));
EXPECT_FALSE(m2.key_comp()("b", "b"));
EXPECT_FALSE(m2.key_comp()("b", "a"));
}
TEST(Btree, ValueComp) {
absl::btree_set<int> s;
EXPECT_TRUE(s.value_comp()(1, 2));
EXPECT_FALSE(s.value_comp()(2, 2));
EXPECT_FALSE(s.value_comp()(2, 1));
absl::btree_map<int, int> m1;
EXPECT_TRUE(m1.value_comp()(std::make_pair(1, 0), std::make_pair(2, 0)));
EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(2, 0)));
EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(1, 0)));
// Even though we internally adapt the comparator of `m2` to be three-way and
// heterogeneous, the comparator we expose through value_comp() is based on
// the original unadapted comparator.
absl::btree_map<std::string, int> m2;
EXPECT_TRUE(m2.value_comp()(std::make_pair("a", 0), std::make_pair("b", 0)));
EXPECT_FALSE(m2.value_comp()(std::make_pair("b", 0), std::make_pair("b", 0)));
EXPECT_FALSE(m2.value_comp()(std::make_pair("b", 0), std::make_pair("a", 0)));
}
// Test that we have the protected members from the std::map::value_compare API.
// See https://en.cppreference.com/w/cpp/container/map/value_compare.
TEST(Btree, MapValueCompProtected) {
struct key_compare {
bool operator()(int l, int r) const { return l < r; }
int id;
};
using value_compare = absl::btree_map<int, int, key_compare>::value_compare;
struct value_comp_child : public value_compare {
explicit value_comp_child(key_compare kc) : value_compare(kc) {}
int GetId() const { return comp.id; }
};
value_comp_child c(key_compare{10});
EXPECT_EQ(c.GetId(), 10);
}
TEST(Btree, DefaultConstruction) {
absl::btree_set<int> s;
absl::btree_map<int, int> m;
absl::btree_multiset<int> ms;
absl::btree_multimap<int, int> mm;
EXPECT_TRUE(s.empty());
EXPECT_TRUE(m.empty());
EXPECT_TRUE(ms.empty());
EXPECT_TRUE(mm.empty());
}
TEST(Btree, SwissTableHashable) {
static constexpr int kValues = 10000;
std::vector<int> values(kValues);
std::iota(values.begin(), values.end(), 0);
std::vector<std::pair<int, int>> map_values;
for (int v : values) map_values.emplace_back(v, -v);
using set = absl::btree_set<int>;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
set{},
set{1},
set{2},
set{1, 2},
set{2, 1},
set(values.begin(), values.end()),
set(values.rbegin(), values.rend()),
}));
using mset = absl::btree_multiset<int>;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
mset{},
mset{1},
mset{1, 1},
mset{2},
mset{2, 2},
mset{1, 2},
mset{1, 1, 2},
mset{1, 2, 2},
mset{1, 1, 2, 2},
mset(values.begin(), values.end()),
mset(values.rbegin(), values.rend()),
}));
using map = absl::btree_map<int, int>;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
map{},
map{{1, 0}},
map{{1, 1}},
map{{2, 0}},
map{{2, 2}},
map{{1, 0}, {2, 1}},
map(map_values.begin(), map_values.end()),
map(map_values.rbegin(), map_values.rend()),
}));
using mmap = absl::btree_multimap<int, int>;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
mmap{},
mmap{{1, 0}},
mmap{{1, 1}},
mmap{{1, 0}, {1, 1}},
mmap{{1, 1}, {1, 0}},
mmap{{2, 0}},
mmap{{2, 2}},
mmap{{1, 0}, {2, 1}},
mmap(map_values.begin(), map_values.end()),
mmap(map_values.rbegin(), map_values.rend()),
}));
}
TEST(Btree, ComparableSet) {
absl::btree_set<int> s1 = {1, 2};
absl::btree_set<int> s2 = {2, 3};
EXPECT_LT(s1, s2);
EXPECT_LE(s1, s2);
EXPECT_LE(s1, s1);
EXPECT_GT(s2, s1);
EXPECT_GE(s2, s1);
EXPECT_GE(s1, s1);
}
TEST(Btree, ComparableSetsDifferentLength) {
absl::btree_set<int> s1 = {1, 2};
absl::btree_set<int> s2 = {1, 2, 3};
EXPECT_LT(s1, s2);
EXPECT_LE(s1, s2);
EXPECT_GT(s2, s1);
EXPECT_GE(s2, s1);
}
TEST(Btree, ComparableMultiset) {
absl::btree_multiset<int> s1 = {1, 2};
absl::btree_multiset<int> s2 = {2, 3};
EXPECT_LT(s1, s2);
EXPECT_LE(s1, s2);
EXPECT_LE(s1, s1);
EXPECT_GT(s2, s1);
EXPECT_GE(s2, s1);
EXPECT_GE(s1, s1);
}
TEST(Btree, ComparableMap) {
absl::btree_map<int, int> s1 = {{1, 2}};
absl::btree_map<int, int> s2 = {{2, 3}};
EXPECT_LT(s1, s2);
EXPECT_LE(s1, s2);
EXPECT_LE(s1, s1);
EXPECT_GT(s2, s1);
EXPECT_GE(s2, s1);
EXPECT_GE(s1, s1);
}
TEST(Btree, ComparableMultimap) {
absl::btree_multimap<int, int> s1 = {{1, 2}};
absl::btree_multimap<int, int> s2 = {{2, 3}};
EXPECT_LT(s1, s2);
EXPECT_LE(s1, s2);
EXPECT_LE(s1, s1);
EXPECT_GT(s2, s1);
EXPECT_GE(s2, s1);
EXPECT_GE(s1, s1);
}
TEST(Btree, ComparableSetWithCustomComparator) {
// As specified by
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf section
// [container.requirements.general].12, ordering associative containers always
// uses default '<' operator
// - even if otherwise the container uses custom functor.
absl::btree_set<int, std::greater<int>> s1 = {1, 2};
absl::btree_set<int, std::greater<int>> s2 = {2, 3};
EXPECT_LT(s1, s2);
EXPECT_LE(s1, s2);
EXPECT_LE(s1, s1);
EXPECT_GT(s2, s1);
EXPECT_GE(s2, s1);
EXPECT_GE(s1, s1);
}
TEST(Btree, EraseReturnsIterator) {
absl::btree_set<int> set = {1, 2, 3, 4, 5};
auto result_it = set.erase(set.begin(), set.find(3));
EXPECT_EQ(result_it, set.find(3));
result_it = set.erase(set.find(5));
EXPECT_EQ(result_it, set.end());
}
TEST(Btree, ExtractAndInsertNodeHandleSet) {
absl::btree_set<int> src1 = {1, 2, 3, 4, 5};
auto nh = src1.extract(src1.find(3));
EXPECT_THAT(src1, ElementsAre(1, 2, 4, 5));
absl::btree_set<int> other;
absl::btree_set<int>::insert_return_type res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(3));
EXPECT_EQ(res.position, other.find(3));
EXPECT_TRUE(res.inserted);
EXPECT_TRUE(res.node.empty());
absl::btree_set<int> src2 = {3, 4};
nh = src2.extract(src2.find(3));
EXPECT_THAT(src2, ElementsAre(4));
res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(3));
EXPECT_EQ(res.position, other.find(3));
EXPECT_FALSE(res.inserted);
ASSERT_FALSE(res.node.empty());
EXPECT_EQ(res.node.value(), 3);
}
template <typename Set>
void TestExtractWithTrackingForSet() {
InstanceTracker tracker;
{
Set s;
// Add enough elements to make sure we test internal nodes too.
const size_t kSize = 1000;
while (s.size() < kSize) {
s.insert(MovableOnlyInstance(s.size()));
}
for (int i = 0; i < kSize; ++i) {
// Extract with key
auto nh = s.extract(MovableOnlyInstance(i));
EXPECT_EQ(s.size(), kSize - 1);
EXPECT_EQ(nh.value().value(), i);
// Insert with node
s.insert(std::move(nh));
EXPECT_EQ(s.size(), kSize);
// Extract with iterator
auto it = s.find(MovableOnlyInstance(i));
nh = s.extract(it);
EXPECT_EQ(s.size(), kSize - 1);
EXPECT_EQ(nh.value().value(), i);
// Insert with node and hint
s.insert(s.begin(), std::move(nh));
EXPECT_EQ(s.size(), kSize);
}
}
EXPECT_EQ(0, tracker.instances());
}
template <typename Map>
void TestExtractWithTrackingForMap() {
InstanceTracker tracker;
{
Map m;
// Add enough elements to make sure we test internal nodes too.
const size_t kSize = 1000;
while (m.size() < kSize) {
m.insert(
{CopyableMovableInstance(m.size()), MovableOnlyInstance(m.size())});
}
for (int i = 0; i < kSize; ++i) {
// Extract with key
auto nh = m.extract(CopyableMovableInstance(i));
EXPECT_EQ(m.size(), kSize - 1);
EXPECT_EQ(nh.key().value(), i);
EXPECT_EQ(nh.mapped().value(), i);
// Insert with node
m.insert(std::move(nh));
EXPECT_EQ(m.size(), kSize);
// Extract with iterator
auto it = m.find(CopyableMovableInstance(i));
nh = m.extract(it);
EXPECT_EQ(m.size(), kSize - 1);
EXPECT_EQ(nh.key().value(), i);
EXPECT_EQ(nh.mapped().value(), i);
// Insert with node and hint
m.insert(m.begin(), std::move(nh));
EXPECT_EQ(m.size(), kSize);
}
}
EXPECT_EQ(0, tracker.instances());
}
TEST(Btree, ExtractTracking) {
TestExtractWithTrackingForSet<absl::btree_set<MovableOnlyInstance>>();
TestExtractWithTrackingForSet<absl::btree_multiset<MovableOnlyInstance>>();
TestExtractWithTrackingForMap<
absl::btree_map<CopyableMovableInstance, MovableOnlyInstance>>();
TestExtractWithTrackingForMap<
absl::btree_multimap<CopyableMovableInstance, MovableOnlyInstance>>();
}
TEST(Btree, ExtractAndInsertNodeHandleMultiSet) {
absl::btree_multiset<int> src1 = {1, 2, 3, 3, 4, 5};
auto nh = src1.extract(src1.find(3));
EXPECT_THAT(src1, ElementsAre(1, 2, 3, 4, 5));
absl::btree_multiset<int> other;
auto res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(3));
EXPECT_EQ(res, other.find(3));
absl::btree_multiset<int> src2 = {3, 4};
nh = src2.extract(src2.find(3));
EXPECT_THAT(src2, ElementsAre(4));
res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(3, 3));
EXPECT_EQ(res, ++other.find(3));
}
TEST(Btree, ExtractAndInsertNodeHandleMap) {
absl::btree_map<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}};
auto nh = src1.extract(src1.find(3));
EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6)));
absl::btree_map<int, int> other;
absl::btree_map<int, int>::insert_return_type res =
other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
EXPECT_EQ(res.position, other.find(3));
EXPECT_TRUE(res.inserted);
EXPECT_TRUE(res.node.empty());
absl::btree_map<int, int> src2 = {{3, 6}};
nh = src2.extract(src2.find(3));
EXPECT_TRUE(src2.empty());
res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
EXPECT_EQ(res.position, other.find(3));
EXPECT_FALSE(res.inserted);
ASSERT_FALSE(res.node.empty());
EXPECT_EQ(res.node.key(), 3);
EXPECT_EQ(res.node.mapped(), 6);
}
TEST(Btree, ExtractAndInsertNodeHandleMultiMap) {
absl::btree_multimap<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}};
auto nh = src1.extract(src1.find(3));
EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6)));
absl::btree_multimap<int, int> other;
auto res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
EXPECT_EQ(res, other.find(3));
absl::btree_multimap<int, int> src2 = {{3, 6}};
nh = src2.extract(src2.find(3));
EXPECT_TRUE(src2.empty());
res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(Pair(3, 4), Pair(3, 6)));
EXPECT_EQ(res, ++other.begin());
}
TEST(Btree, ExtractMultiMapEquivalentKeys) {
// Note: using string keys means a three-way comparator.
absl::btree_multimap<std::string, int> map;
for (int i = 0; i < 100; ++i) {
for (int j = 0; j < 100; ++j) {
map.insert({absl::StrCat(i), j});
}
}
for (int i = 0; i < 100; ++i) {
const std::string key = absl::StrCat(i);
auto node_handle = map.extract(key);
EXPECT_EQ(node_handle.key(), key);
EXPECT_EQ(node_handle.mapped(), 0) << i;
}
for (int i = 0; i < 100; ++i) {
const std::string key = absl::StrCat(i);
auto node_handle = map.extract(key);
EXPECT_EQ(node_handle.key(), key);
EXPECT_EQ(node_handle.mapped(), 1) << i;
}
}
TEST(Btree, ExtractAndGetNextSet) {
absl::btree_set<int> src = {1, 2, 3, 4, 5};
auto it = src.find(3);
auto extracted_and_next = src.extract_and_get_next(it);
EXPECT_THAT(src, ElementsAre(1, 2, 4, 5));
EXPECT_EQ(extracted_and_next.node.value(), 3);
EXPECT_EQ(*extracted_and_next.next, 4);
}
TEST(Btree, ExtractAndGetNextMultiSet) {
absl::btree_multiset<int> src = {1, 2, 3, 4, 5};
auto it = src.find(3);
auto extracted_and_next = src.extract_and_get_next(it);
EXPECT_THAT(src, ElementsAre(1, 2, 4, 5));
EXPECT_EQ(extracted_and_next.node.value(), 3);
EXPECT_EQ(*extracted_and_next.next, 4);
}
TEST(Btree, ExtractAndGetNextMap) {
absl::btree_map<int, int> src = {{1, 2}, {3, 4}, {5, 6}};
auto it = src.find(3);
auto extracted_and_next = src.extract_and_get_next(it);
EXPECT_THAT(src, ElementsAre(Pair(1, 2), Pair(5, 6)));
EXPECT_EQ(extracted_and_next.node.key(), 3);
EXPECT_EQ(extracted_and_next.node.mapped(), 4);
EXPECT_THAT(*extracted_and_next.next, Pair(5, 6));
}
TEST(Btree, ExtractAndGetNextMultiMap) {
absl::btree_multimap<int, int> src = {{1, 2}, {3, 4}, {5, 6}};
auto it = src.find(3);
auto extracted_and_next = src.extract_and_get_next(it);
EXPECT_THAT(src, ElementsAre(Pair(1, 2), Pair(5, 6)));
EXPECT_EQ(extracted_and_next.node.key(), 3);
EXPECT_EQ(extracted_and_next.node.mapped(), 4);
EXPECT_THAT(*extracted_and_next.next, Pair(5, 6));
}
TEST(Btree, ExtractAndGetNextEndIter) {
absl::btree_set<int> src = {1, 2, 3, 4, 5};
auto it = src.find(5);
auto extracted_and_next = src.extract_and_get_next(it);
EXPECT_THAT(src, ElementsAre(1, 2, 3, 4));
EXPECT_EQ(extracted_and_next.node.value(), 5);
EXPECT_EQ(extracted_and_next.next, src.end());
}
TEST(Btree, ExtractDoesntCauseExtraMoves) {
#ifdef _MSC_VER
GTEST_SKIP() << "This test fails on MSVC.";
#endif
using Set = absl::btree_set<MovableOnlyInstance>;
std::array<std::function<void(Set &)>, 3> extracters = {
[](Set &s) { auto node = s.extract(s.begin()); },
[](Set &s) { auto ret = s.extract_and_get_next(s.begin()); },
[](Set &s) { auto node = s.extract(MovableOnlyInstance(0)); }};
InstanceTracker tracker;
for (int i = 0; i < 3; ++i) {
Set s;
s.insert(MovableOnlyInstance(0));
tracker.ResetCopiesMovesSwaps();
extracters[i](s);
// We expect to see exactly 1 move: from the original slot into the
// extracted node.
EXPECT_EQ(tracker.copies(), 0) << i;
EXPECT_EQ(tracker.moves(), 1) << i;
EXPECT_EQ(tracker.swaps(), 0) << i;
}
}
// For multisets, insert with hint also affects correctness because we need to
// insert immediately before the hint if possible.
struct InsertMultiHintData {
int key;
int not_key;
bool operator==(const InsertMultiHintData other) const {
return key == other.key && not_key == other.not_key;
}
};
struct InsertMultiHintDataKeyCompare {
using is_transparent = void;
bool operator()(const InsertMultiHintData a,
const InsertMultiHintData b) const {
return a.key < b.key;
}
bool operator()(const int a, const InsertMultiHintData b) const {
return a < b.key;
}
bool operator()(const InsertMultiHintData a, const int b) const {
return a.key < b;
}
};
TEST(Btree, InsertHintNodeHandle) {
// For unique sets, insert with hint is just a performance optimization.
// Test that insert works correctly when the hint is right or wrong.
{
absl::btree_set<int> src = {1, 2, 3, 4, 5};
auto nh = src.extract(src.find(3));
EXPECT_THAT(src, ElementsAre(1, 2, 4, 5));
absl::btree_set<int> other = {0, 100};
// Test a correct hint.
auto it = other.insert(other.lower_bound(3), std::move(nh));
EXPECT_THAT(other, ElementsAre(0, 3, 100));
EXPECT_EQ(it, other.find(3));
nh = src.extract(src.find(5));
// Test an incorrect hint.
it = other.insert(other.end(), std::move(nh));
EXPECT_THAT(other, ElementsAre(0, 3, 5, 100));
EXPECT_EQ(it, other.find(5));
}
absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> src =
{{1, 2}, {3, 4}, {3, 5}};
auto nh = src.extract(src.lower_bound(3));
EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 4}));
absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare>
other = {{3, 1}, {3, 2}, {3, 3}};
auto it = other.insert(--other.end(), std::move(nh));
EXPECT_THAT(
other, ElementsAre(InsertMultiHintData{3, 1}, InsertMultiHintData{3, 2},
InsertMultiHintData{3, 4}, InsertMultiHintData{3, 3}));
EXPECT_EQ(it, --(--other.end()));
nh = src.extract(src.find(3));
EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 5}));
it = other.insert(other.begin(), std::move(nh));
EXPECT_THAT(other,
ElementsAre(InsertMultiHintData{3, 5}, InsertMultiHintData{3, 1},
InsertMultiHintData{3, 2}, InsertMultiHintData{3, 4},
InsertMultiHintData{3, 3}));
EXPECT_EQ(it, other.begin());
}
struct IntCompareToCmp {
absl::weak_ordering operator()(int a, int b) const {
if (a < b) return absl::weak_ordering::less;
if (a > b) return absl::weak_ordering::greater;
return absl::weak_ordering::equivalent;
}
};
TEST(Btree, MergeIntoUniqueContainers) {
absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
absl::btree_multiset<int> src2 = {3, 4, 4, 5};
absl::btree_set<int> dst;
dst.merge(src1);
EXPECT_TRUE(src1.empty());
EXPECT_THAT(dst, ElementsAre(1, 2, 3));
dst.merge(src2);
EXPECT_THAT(src2, ElementsAre(3, 4));
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5));
}
TEST(Btree, MergeIntoUniqueContainersWithCompareTo) {
absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
absl::btree_multiset<int> src2 = {3, 4, 4, 5};
absl::btree_set<int, IntCompareToCmp> dst;
dst.merge(src1);
EXPECT_TRUE(src1.empty());
EXPECT_THAT(dst, ElementsAre(1, 2, 3));
dst.merge(src2);
EXPECT_THAT(src2, ElementsAre(3, 4));
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5));
}
TEST(Btree, MergeIntoMultiContainers) {
absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
absl::btree_multiset<int> src2 = {3, 4, 4, 5};
absl::btree_multiset<int> dst;
dst.merge(src1);
EXPECT_TRUE(src1.empty());
EXPECT_THAT(dst, ElementsAre(1, 2, 3));
dst.merge(src2);
EXPECT_TRUE(src2.empty());
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5));
}
TEST(Btree, MergeIntoMultiContainersWithCompareTo) {
absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
absl::btree_multiset<int> src2 = {3, 4, 4, 5};
absl::btree_multiset<int, IntCompareToCmp> dst;
dst.merge(src1);
EXPECT_TRUE(src1.empty());
EXPECT_THAT(dst, ElementsAre(1, 2, 3));
dst.merge(src2);
EXPECT_TRUE(src2.empty());
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5));
}
TEST(Btree, MergeIntoMultiMapsWithDifferentComparators) {
absl::btree_map<int, int, IntCompareToCmp> src1 = {{1, 1}, {2, 2}, {3, 3}};
absl::btree_multimap<int, int, std::greater<int>> src2 = {
{5, 5}, {4, 1}, {4, 4}, {3, 2}};
absl::btree_multimap<int, int> dst;
dst.merge(src1);
EXPECT_TRUE(src1.empty());
EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3)));
dst.merge(src2);
EXPECT_TRUE(src2.empty());
EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(3, 2),
Pair(4, 1), Pair(4, 4), Pair(5, 5)));
}
TEST(Btree, MergeIntoSetMovableOnly) {
absl::btree_set<MovableOnlyInstance> src;
src.insert(MovableOnlyInstance(1));
absl::btree_multiset<MovableOnlyInstance> dst1;
dst1.insert(MovableOnlyInstance(2));
absl::btree_set<MovableOnlyInstance> dst2;
// Test merge into multiset.
dst1.merge(src);
EXPECT_TRUE(src.empty());
// ElementsAre/ElementsAreArray don't work with move-only types.
ASSERT_THAT(dst1, SizeIs(2));
EXPECT_EQ(*dst1.begin(), MovableOnlyInstance(1));
EXPECT_EQ(*std::next(dst1.begin()), MovableOnlyInstance(2));
// Test merge into set.
dst2.merge(dst1);
EXPECT_TRUE(dst1.empty());
ASSERT_THAT(dst2, SizeIs(2));
EXPECT_EQ(*dst2.begin(), MovableOnlyInstance(1));
EXPECT_EQ(*std::next(dst2.begin()), MovableOnlyInstance(2));
}
struct KeyCompareToWeakOrdering {
template <typename T>
absl::weak_ordering operator()(const T &a, const T &b) const {
return a < b ? absl::weak_ordering::less
: a == b ? absl::weak_ordering::equivalent
: absl::weak_ordering::greater;
}
};
struct KeyCompareToStrongOrdering {
template <typename T>
absl::strong_ordering operator()(const T &a, const T &b) const {
return a < b ? absl::strong_ordering::less
: a == b ? absl::strong_ordering::equal
: absl::strong_ordering::greater;
}
};
TEST(Btree, UserProvidedKeyCompareToComparators) {
absl::btree_set<int, KeyCompareToWeakOrdering> weak_set = {1, 2, 3};
EXPECT_TRUE(weak_set.contains(2));
EXPECT_FALSE(weak_set.contains(4));
absl::btree_set<int, KeyCompareToStrongOrdering> strong_set = {1, 2, 3};
EXPECT_TRUE(strong_set.contains(2));
EXPECT_FALSE(strong_set.contains(4));
}
TEST(Btree, TryEmplaceBasicTest) {
absl::btree_map<int, std::string> m;
// Should construct a string from the literal.
m.try_emplace(1, "one");
EXPECT_EQ(1, m.size());
// Try other string constructors and const lvalue key.
const int key(42);
m.try_emplace(key, 3, 'a');
m.try_emplace(2, std::string("two"));
EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, std::string>>{
{1, "one"}, {2, "two"}, {42, "aaa"}}));
}
TEST(Btree, TryEmplaceWithHintWorks) {
// Use a counting comparator here to verify that hint is used.
int calls = 0;
auto cmp = [&calls](int x, int y) {
++calls;
return x < y;
};
using Cmp = decltype(cmp);
// Use a map that is opted out of key_compare being adapted so we can expect
// strict comparison call limits.
absl::btree_map<int, int, CheckedCompareOptedOutCmp<Cmp>> m(cmp);
for (int i = 0; i < 128; ++i) {
m.emplace(i, i);
}
// Sanity check for the comparator
calls = 0;
m.emplace(127, 127);
EXPECT_GE(calls, 4);
// Try with begin hint:
calls = 0;
auto it = m.try_emplace(m.begin(), -1, -1);
EXPECT_EQ(129, m.size());
EXPECT_EQ(it, m.begin());
EXPECT_LE(calls, 2);
// Try with end hint:
calls = 0;
std::pair<int, int> pair1024 = {1024, 1024};
it = m.try_emplace(m.end(), pair1024.first, pair1024.second);
EXPECT_EQ(130, m.size());
EXPECT_EQ(it, --m.end());
EXPECT_LE(calls, 2);
// Try value already present, bad hint; ensure no duplicate added:
calls = 0;
it = m.try_emplace(m.end(), 16, 17);
EXPECT_EQ(130, m.size());
EXPECT_GE(calls, 4);
EXPECT_EQ(it, m.find(16));
// Try value already present, hint points directly to it:
calls = 0;
it = m.try_emplace(it, 16, 17);
EXPECT_EQ(130, m.size());
EXPECT_LE(calls, 2);
EXPECT_EQ(it, m.find(16));
m.erase(2);
EXPECT_EQ(129, m.size());
auto hint = m.find(3);
// Try emplace in the middle of two other elements.
calls = 0;
m.try_emplace(hint, 2, 2);
EXPECT_EQ(130, m.size());
EXPECT_LE(calls, 2);
EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
}
TEST(Btree, TryEmplaceWithBadHint) {
absl::btree_map<int, int> m = {{1, 1}, {9, 9}};
// Bad hint (too small), should still emplace:
auto it = m.try_emplace(m.begin(), 2, 2);
EXPECT_EQ(it, ++m.begin());
EXPECT_THAT(m, ElementsAreArray(
std::vector<std::pair<int, int>>{{1, 1}, {2, 2}, {9, 9}}));
// Bad hint, too large this time:
it = m.try_emplace(++(++m.begin()), 0, 0);
EXPECT_EQ(it, m.begin());
EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, int>>{
{0, 0}, {1, 1}, {2, 2}, {9, 9}}));
}
TEST(Btree, TryEmplaceMaintainsSortedOrder) {
absl::btree_map<int, std::string> m;
std::pair<int, std::string> pair5 = {5, "five"};
// Test both lvalue & rvalue emplace.
m.try_emplace(10, "ten");
m.try_emplace(pair5.first, pair5.second);
EXPECT_EQ(2, m.size());
EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
int int100{100};
m.try_emplace(int100, "hundred");
m.try_emplace(1, "one");
EXPECT_EQ(4, m.size());
EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
}
TEST(Btree, TryEmplaceWithHintAndNoValueArgsWorks) {
absl::btree_map<int, int> m;
m.try_emplace(m.end(), 1);
EXPECT_EQ(0, m[1]);
}
TEST(Btree, TryEmplaceWithHintAndMultipleValueArgsWorks) {
absl::btree_map<int, std::string> m;
m.try_emplace(m.end(), 1, 10, 'a');
EXPECT_EQ(std::string(10, 'a'), m[1]);
}
template <typename Alloc>
using BtreeSetAlloc = absl::btree_set<int, std::less<int>, Alloc>;
TEST(Btree, AllocatorPropagation) {
TestAllocPropagation<BtreeSetAlloc>();
}
TEST(Btree, MinimumAlignmentAllocator) {
absl::btree_set<int8_t, std::less<int8_t>, MinimumAlignmentAlloc<int8_t>> set;
// Do some basic operations. Test that everything is fine when allocator uses
// minimal alignment.
for (int8_t i = 0; i < 100; ++i) set.insert(i);
set.erase(set.find(50), set.end());
for (int8_t i = 51; i < 101; ++i) set.insert(i);
EXPECT_EQ(set.size(), 100);
}
TEST(Btree, EmptyTree) {
absl::btree_set<int> s;
EXPECT_TRUE(s.empty());
EXPECT_EQ(s.size(), 0);
EXPECT_GT(s.max_size(), 0);
}
bool IsEven(int k) { return k % 2 == 0; }
TEST(Btree, EraseIf) {
// Test that erase_if works with all the container types and supports lambdas.
{
absl::btree_set<int> s = {1, 3, 5, 6, 100};
EXPECT_EQ(erase_if(s, [](int k) { return k > 3; }), 3);
EXPECT_THAT(s, ElementsAre(1, 3));
}
{
absl::btree_multiset<int> s = {1, 3, 3, 5, 6, 6, 100};
EXPECT_EQ(erase_if(s, [](int k) { return k <= 3; }), 3);
EXPECT_THAT(s, ElementsAre(5, 6, 6, 100));
}
{
absl::btree_map<int, int> m = {{1, 1}, {3, 3}, {6, 6}, {100, 100}};
EXPECT_EQ(
erase_if(m, [](std::pair<const int, int> kv) { return kv.first > 3; }),
2);
EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3)));
}
{
absl::btree_multimap<int, int> m = {{1, 1}, {3, 3}, {3, 6},
{6, 6}, {6, 7}, {100, 6}};
EXPECT_EQ(
erase_if(m,
[](std::pair<const int, int> kv) { return kv.second == 6; }),
3);
EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3), Pair(6, 7)));
}
// Test that erasing all elements from a large set works and test support for
// function pointers.
{
absl::btree_set<int> s;
for (int i = 0; i < 1000; ++i) s.insert(2 * i);
EXPECT_EQ(erase_if(s, IsEven), 1000);
EXPECT_THAT(s, IsEmpty());
}
// Test that erase_if supports other format of function pointers.
{
absl::btree_set<int> s = {1, 3, 5, 6, 100};
EXPECT_EQ(erase_if(s, &IsEven), 2);
EXPECT_THAT(s, ElementsAre(1, 3, 5));
}
// Test that erase_if invokes the predicate once per element.
{
absl::btree_set<int> s;
for (int i = 0; i < 1000; ++i) s.insert(i);
int pred_calls = 0;
EXPECT_EQ(erase_if(s,
[&pred_calls](int k) {
++pred_calls;
return k % 2;
}),
500);
EXPECT_THAT(s, SizeIs(500));
EXPECT_EQ(pred_calls, 1000);
}
}
TEST(Btree, InsertOrAssign) {
absl::btree_map<int, int> m = {{1, 1}, {3, 3}};
using value_type = typename decltype(m)::value_type;
auto ret = m.insert_or_assign(4, 4);
EXPECT_EQ(*ret.first, value_type(4, 4));
EXPECT_TRUE(ret.second);
ret = m.insert_or_assign(3, 100);
EXPECT_EQ(*ret.first, value_type(3, 100));
EXPECT_FALSE(ret.second);
auto hint_ret = m.insert_or_assign(ret.first, 3, 200);
EXPECT_EQ(*hint_ret, value_type(3, 200));
hint_ret = m.insert_or_assign(m.find(1), 0, 1);
EXPECT_EQ(*hint_ret, value_type(0, 1));
// Test with bad hint.
hint_ret = m.insert_or_assign(m.end(), -1, 1);
EXPECT_EQ(*hint_ret, value_type(-1, 1));
EXPECT_THAT(m, ElementsAre(Pair(-1, 1), Pair(0, 1), Pair(1, 1), Pair(3, 200),
Pair(4, 4)));
}
TEST(Btree, InsertOrAssignMovableOnly) {
absl::btree_map<int, MovableOnlyInstance> m;
using value_type = typename decltype(m)::value_type;
auto ret = m.insert_or_assign(4, MovableOnlyInstance(4));
EXPECT_EQ(*ret.first, value_type(4, MovableOnlyInstance(4)));
EXPECT_TRUE(ret.second);
ret = m.insert_or_assign(4, MovableOnlyInstance(100));
EXPECT_EQ(*ret.first, value_type(4, MovableOnlyInstance(100)));
EXPECT_FALSE(ret.second);
auto hint_ret = m.insert_or_assign(ret.first, 3, MovableOnlyInstance(200));
EXPECT_EQ(*hint_ret, value_type(3, MovableOnlyInstance(200)));
EXPECT_EQ(m.size(), 2);
}
TEST(Btree, BitfieldArgument) {
union {
int n : 1;
};
n = 0;
absl::btree_map<int, int> m;
m.erase(n);
m.count(n);
m.find(n);
m.contains(n);
m.equal_range(n);
m.insert_or_assign(n, n);
m.insert_or_assign(m.end(), n, n);
m.try_emplace(n);
m.try_emplace(m.end(), n);
m.at(n);
m[n];
}
TEST(Btree, SetRangeConstructorAndInsertSupportExplicitConversionComparable) {
const absl::string_view names[] = {"n1", "n2"};
absl::btree_set<std::string> name_set1{std::begin(names), std::end(names)};
EXPECT_THAT(name_set1, ElementsAreArray(names));
absl::btree_set<std::string> name_set2;
name_set2.insert(std::begin(names), std::end(names));
EXPECT_THAT(name_set2, ElementsAreArray(names));
}
// A type that is explicitly convertible from int and counts constructor calls.
struct ConstructorCounted {
explicit ConstructorCounted(int i) : i(i) { ++constructor_calls; }
bool operator==(int other) const { return i == other; }
int i;
static int constructor_calls;
};
int ConstructorCounted::constructor_calls = 0;
struct ConstructorCountedCompare {
bool operator()(int a, const ConstructorCounted &b) const { return a < b.i; }
bool operator()(const ConstructorCounted &a, int b) const { return a.i < b; }
bool operator()(const ConstructorCounted &a,
const ConstructorCounted &b) const {
return a.i < b.i;
}
using is_transparent = void;
};
TEST(Btree,
SetRangeConstructorAndInsertExplicitConvComparableLimitConstruction) {
const int i[] = {0, 1, 1};
ConstructorCounted::constructor_calls = 0;
absl::btree_set<ConstructorCounted, ConstructorCountedCompare> set{
std::begin(i), std::end(i)};
EXPECT_THAT(set, ElementsAre(0, 1));
EXPECT_EQ(ConstructorCounted::constructor_calls, 2);
set.insert(std::begin(i), std::end(i));
EXPECT_THAT(set, ElementsAre(0, 1));
EXPECT_EQ(ConstructorCounted::constructor_calls, 2);
}
TEST(Btree,
SetRangeConstructorAndInsertSupportExplicitConversionNonComparable) {
const int i[] = {0, 1};
absl::btree_set<std::vector<void *>> s1{std::begin(i), std::end(i)};
EXPECT_THAT(s1, ElementsAre(IsEmpty(), ElementsAre(IsNull())));
absl::btree_set<std::vector<void *>> s2;
s2.insert(std::begin(i), std::end(i));
EXPECT_THAT(s2, ElementsAre(IsEmpty(), ElementsAre(IsNull())));
}
// libstdc++ included with GCC 4.9 has a bug in the std::pair constructors that
// prevents explicit conversions between pair types.
// We only run this test for the libstdc++ from GCC 7 or newer because we can't
// reliably check the libstdc++ version prior to that release.
#if !defined(__GLIBCXX__) || \
(defined(_GLIBCXX_RELEASE) && _GLIBCXX_RELEASE >= 7)
TEST(Btree, MapRangeConstructorAndInsertSupportExplicitConversionComparable) {
const std::pair<absl::string_view, int> names[] = {{"n1", 1}, {"n2", 2}};
absl::btree_map<std::string, int> name_map1{std::begin(names),
std::end(names)};
EXPECT_THAT(name_map1, ElementsAre(Pair("n1", 1), Pair("n2", 2)));
absl::btree_map<std::string, int> name_map2;
name_map2.insert(std::begin(names), std::end(names));
EXPECT_THAT(name_map2, ElementsAre(Pair("n1", 1), Pair("n2", 2)));
}
TEST(Btree,
MapRangeConstructorAndInsertExplicitConvComparableLimitConstruction) {
const std::pair<int, int> i[] = {{0, 1}, {1, 2}, {1, 3}};
ConstructorCounted::constructor_calls = 0;
absl::btree_map<ConstructorCounted, int, ConstructorCountedCompare> map{
std::begin(i), std::end(i)};
EXPECT_THAT(map, ElementsAre(Pair(0, 1), Pair(1, 2)));
EXPECT_EQ(ConstructorCounted::constructor_calls, 2);
map.insert(std::begin(i), std::end(i));
EXPECT_THAT(map, ElementsAre(Pair(0, 1), Pair(1, 2)));
EXPECT_EQ(ConstructorCounted::constructor_calls, 2);
}
TEST(Btree,
MapRangeConstructorAndInsertSupportExplicitConversionNonComparable) {
const std::pair<int, int> i[] = {{0, 1}, {1, 2}};
absl::btree_map<std::vector<void *>, int> m1{std::begin(i), std::end(i)};
EXPECT_THAT(m1,
ElementsAre(Pair(IsEmpty(), 1), Pair(ElementsAre(IsNull()), 2)));
absl::btree_map<std::vector<void *>, int> m2;
m2.insert(std::begin(i), std::end(i));
EXPECT_THAT(m2,
ElementsAre(Pair(IsEmpty(), 1), Pair(ElementsAre(IsNull()), 2)));
}
TEST(Btree, HeterogeneousTryEmplace) {
absl::btree_map<std::string, int> m;
std::string s = "key";
absl::string_view sv = s;
m.try_emplace(sv, 1);
EXPECT_EQ(m[s], 1);
m.try_emplace(m.end(), sv, 2);
EXPECT_EQ(m[s], 1);
}
TEST(Btree, HeterogeneousOperatorMapped) {
absl::btree_map<std::string, int> m;
std::string s = "key";
absl::string_view sv = s;
m[sv] = 1;
EXPECT_EQ(m[s], 1);
m[sv] = 2;
EXPECT_EQ(m[s], 2);
}
TEST(Btree, HeterogeneousInsertOrAssign) {
absl::btree_map<std::string, int> m;
std::string s = "key";
absl::string_view sv = s;
m.insert_or_assign(sv, 1);
EXPECT_EQ(m[s], 1);
m.insert_or_assign(m.end(), sv, 2);
EXPECT_EQ(m[s], 2);
}
#endif
// This test requires std::launder for mutable key access in node handles.
#if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606
TEST(Btree, NodeHandleMutableKeyAccess) {
{
absl::btree_map<std::string, std::string> map;
map["key1"] = "mapped";
auto nh = map.extract(map.begin());
nh.key().resize(3);
map.insert(std::move(nh));
EXPECT_THAT(map, ElementsAre(Pair("key", "mapped")));
}
// Also for multimap.
{
absl::btree_multimap<std::string, std::string> map;
map.emplace("key1", "mapped");
auto nh = map.extract(map.begin());
nh.key().resize(3);
map.insert(std::move(nh));
EXPECT_THAT(map, ElementsAre(Pair("key", "mapped")));
}
}
#endif
struct MultiKey {
int i1;
int i2;
};
bool operator==(const MultiKey a, const MultiKey b) {
return a.i1 == b.i1 && a.i2 == b.i2;
}
// A heterogeneous comparator that has different equivalence classes for
// different lookup types.
struct MultiKeyComp {
using is_transparent = void;
bool operator()(const MultiKey a, const MultiKey b) const {
if (a.i1 != b.i1) return a.i1 < b.i1;
return a.i2 < b.i2;
}
bool operator()(const int a, const MultiKey b) const { return a < b.i1; }
bool operator()(const MultiKey a, const int b) const { return a.i1 < b; }
};
// A heterogeneous, three-way comparator that has different equivalence classes
// for different lookup types.
struct MultiKeyThreeWayComp {
using is_transparent = void;
absl::weak_ordering operator()(const MultiKey a, const MultiKey b) const {
if (a.i1 < b.i1) return absl::weak_ordering::less;
if (a.i1 > b.i1) return absl::weak_ordering::greater;
if (a.i2 < b.i2) return absl::weak_ordering::less;
if (a.i2 > b.i2) return absl::weak_ordering::greater;
return absl::weak_ordering::equivalent;
}
absl::weak_ordering operator()(const int a, const MultiKey b) const {
if (a < b.i1) return absl::weak_ordering::less;
if (a > b.i1) return absl::weak_ordering::greater;
return absl::weak_ordering::equivalent;
}
absl::weak_ordering operator()(const MultiKey a, const int b) const {
if (a.i1 < b) return absl::weak_ordering::less;
if (a.i1 > b) return absl::weak_ordering::greater;
return absl::weak_ordering::equivalent;
}
};
template <typename Compare>
class BtreeMultiKeyTest : public ::testing::Test {};
using MultiKeyComps = ::testing::Types<MultiKeyComp, MultiKeyThreeWayComp>;
TYPED_TEST_SUITE(BtreeMultiKeyTest, MultiKeyComps);
TYPED_TEST(BtreeMultiKeyTest, EqualRange) {
absl::btree_set<MultiKey, TypeParam> set;
for (int i = 0; i < 100; ++i) {
for (int j = 0; j < 100; ++j) {
set.insert({i, j});
}
}
for (int i = 0; i < 100; ++i) {
auto equal_range = set.equal_range(i);
EXPECT_EQ(equal_range.first->i1, i);
EXPECT_EQ(equal_range.first->i2, 0) << i;
EXPECT_EQ(std::distance(equal_range.first, equal_range.second), 100) << i;
}
}
TYPED_TEST(BtreeMultiKeyTest, Extract) {
absl::btree_set<MultiKey, TypeParam> set;
for (int i = 0; i < 100; ++i) {
for (int j = 0; j < 100; ++j) {
set.insert({i, j});
}
}
for (int i = 0; i < 100; ++i) {
auto node_handle = set.extract(i);
EXPECT_EQ(node_handle.value().i1, i);
EXPECT_EQ(node_handle.value().i2, 0) << i;
}
for (int i = 0; i < 100; ++i) {
auto node_handle = set.extract(i);
EXPECT_EQ(node_handle.value().i1, i);
EXPECT_EQ(node_handle.value().i2, 1) << i;
}
}
TYPED_TEST(BtreeMultiKeyTest, Erase) {
absl::btree_set<MultiKey, TypeParam> set = {
{1, 1}, {2, 1}, {2, 2}, {3, 1}};
EXPECT_EQ(set.erase(2), 2);
EXPECT_THAT(set, ElementsAre(MultiKey{1, 1}, MultiKey{3, 1}));
}
TYPED_TEST(BtreeMultiKeyTest, Count) {
const absl::btree_set<MultiKey, TypeParam> set = {
{1, 1}, {2, 1}, {2, 2}, {3, 1}};
EXPECT_EQ(set.count(2), 2);
}
TEST(Btree, SetIteratorsAreConst) {
using Set = absl::btree_set<int>;
EXPECT_TRUE(
(std::is_same<typename Set::iterator::reference, const int &>::value));
EXPECT_TRUE(
(std::is_same<typename Set::iterator::pointer, const int *>::value));
using MSet = absl::btree_multiset<int>;
EXPECT_TRUE(
(std::is_same<typename MSet::iterator::reference, const int &>::value));
EXPECT_TRUE(
(std::is_same<typename MSet::iterator::pointer, const int *>::value));
}
TEST(Btree, AllocConstructor) {
using Alloc = CountingAllocator<int>;
using Set = absl::btree_set<int, std::less<int>, Alloc>;
int64_t bytes_used = 0;
Alloc alloc(&bytes_used);
Set set(alloc);
set.insert({1, 2, 3});
EXPECT_THAT(set, ElementsAre(1, 2, 3));
EXPECT_GT(bytes_used, set.size() * sizeof(int));
}
TEST(Btree, AllocInitializerListConstructor) {
using Alloc = CountingAllocator<int>;
using Set = absl::btree_set<int, std::less<int>, Alloc>;
int64_t bytes_used = 0;
Alloc alloc(&bytes_used);
Set set({1, 2, 3}, alloc);
EXPECT_THAT(set, ElementsAre(1, 2, 3));
EXPECT_GT(bytes_used, set.size() * sizeof(int));
}
TEST(Btree, AllocRangeConstructor) {
using Alloc = CountingAllocator<int>;
using Set = absl::btree_set<int, std::less<int>, Alloc>;
int64_t bytes_used = 0;
Alloc alloc(&bytes_used);
std::vector<int> v = {1, 2, 3};
Set set(v.begin(), v.end(), alloc);
EXPECT_THAT(set, ElementsAre(1, 2, 3));
EXPECT_GT(bytes_used, set.size() * sizeof(int));
}
TEST(Btree, AllocCopyConstructor) {
using Alloc = CountingAllocator<int>;
using Set = absl::btree_set<int, std::less<int>, Alloc>;
int64_t bytes_used1 = 0;
Alloc alloc1(&bytes_used1);
Set set1(alloc1);
set1.insert({1, 2, 3});
int64_t bytes_used2 = 0;
Alloc alloc2(&bytes_used2);
Set set2(set1, alloc2);
EXPECT_THAT(set1, ElementsAre(1, 2, 3));
EXPECT_THAT(set2, ElementsAre(1, 2, 3));
EXPECT_GT(bytes_used1, set1.size() * sizeof(int));
EXPECT_EQ(bytes_used1, bytes_used2);
}
TEST(Btree, AllocMoveConstructor_SameAlloc) {
using Alloc = CountingAllocator<int>;
using Set = absl::btree_set<int, std::less<int>, Alloc>;
int64_t bytes_used = 0;
Alloc alloc(&bytes_used);
Set set1(alloc);
set1.insert({1, 2, 3});
const int64_t original_bytes_used = bytes_used;
EXPECT_GT(original_bytes_used, set1.size() * sizeof(int));
Set set2(std::move(set1), alloc);
EXPECT_THAT(set2, ElementsAre(1, 2, 3));
EXPECT_EQ(bytes_used, original_bytes_used);
}
TEST(Btree, AllocMoveConstructor_DifferentAlloc) {
using Alloc = CountingAllocator<int>;
using Set = absl::btree_set<int, std::less<int>, Alloc>;
int64_t bytes_used1 = 0;
Alloc alloc1(&bytes_used1);
Set set1(alloc1);
set1.insert({1, 2, 3});
const int64_t original_bytes_used = bytes_used1;
EXPECT_GT(original_bytes_used, set1.size() * sizeof(int));
int64_t bytes_used2 = 0;
Alloc alloc2(&bytes_used2);
Set set2(std::move(set1), alloc2);
EXPECT_THAT(set2, ElementsAre(1, 2, 3));
// We didn't free these bytes allocated by `set1` yet.
EXPECT_EQ(bytes_used1, original_bytes_used);
EXPECT_EQ(bytes_used2, original_bytes_used);
}
bool IntCmp(const int a, const int b) { return a < b; }
TEST(Btree, SupportsFunctionPtrComparator) {
absl::btree_set<int, decltype(IntCmp) *> set(IntCmp);
set.insert({1, 2, 3});
EXPECT_THAT(set, ElementsAre(1, 2, 3));
EXPECT_TRUE(set.key_comp()(1, 2));
EXPECT_TRUE(set.value_comp()(1, 2));
absl::btree_map<int, int, decltype(IntCmp) *> map(&IntCmp);
map[1] = 1;
EXPECT_THAT(map, ElementsAre(Pair(1, 1)));
EXPECT_TRUE(map.key_comp()(1, 2));
EXPECT_TRUE(map.value_comp()(std::make_pair(1, 1), std::make_pair(2, 2)));
}
template <typename Compare>
struct TransparentPassThroughComp {
using is_transparent = void;
// This will fail compilation if we attempt a comparison that Compare does not
// support, and the failure will happen inside the function implementation so
// it can't be avoided by using SFINAE on this comparator.
template <typename T, typename U>
bool operator()(const T &lhs, const U &rhs) const {
return Compare()(lhs, rhs);
}
};
TEST(Btree,
SupportsTransparentComparatorThatDoesNotImplementAllVisibleOperators) {
absl::btree_set<MultiKey, TransparentPassThroughComp<MultiKeyComp>> set;
set.insert(MultiKey{1, 2});
EXPECT_TRUE(set.contains(1));
}
TEST(Btree, ConstructImplicitlyWithUnadaptedComparator) {
absl::btree_set<MultiKey, MultiKeyComp> set = {{}, MultiKeyComp{}};
}
TEST(Btree, InvalidComparatorsCaught) {
if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled.";
{
struct ZeroAlwaysLessCmp {
bool operator()(int lhs, int rhs) const {
if (lhs == 0) return true;
return lhs < rhs;
}
};
absl::btree_set<int, ZeroAlwaysLessCmp> set;
EXPECT_DEATH(set.insert({0, 1, 2}), "is_self_equivalent");
}
{
struct ThreeWayAlwaysLessCmp {
absl::weak_ordering operator()(int, int) const {
return absl::weak_ordering::less;
}
};
absl::btree_set<int, ThreeWayAlwaysLessCmp> set;
EXPECT_DEATH(set.insert({0, 1, 2}), "is_self_equivalent");
}
{
struct SumGreaterZeroCmp {
bool operator()(int lhs, int rhs) const {
// First, do equivalence correctly - so we can test later condition.
if (lhs == rhs) return false;
return lhs + rhs > 0;
}
};
absl::btree_set<int, SumGreaterZeroCmp> set;
// Note: '!' only needs to be escaped when it's the first character.
EXPECT_DEATH(set.insert({0, 1, 2}),
R"regex(\!lhs_comp_rhs \|\| !comp\(\)\(rhs, lhs\))regex");
}
{
struct ThreeWaySumGreaterZeroCmp {
absl::weak_ordering operator()(int lhs, int rhs) const {
// First, do equivalence correctly - so we can test later condition.
if (lhs == rhs) return absl::weak_ordering::equivalent;
if (lhs + rhs > 0) return absl::weak_ordering::less;
if (lhs + rhs == 0) return absl::weak_ordering::equivalent;
return absl::weak_ordering::greater;
}
};
absl::btree_set<int, ThreeWaySumGreaterZeroCmp> set;
EXPECT_DEATH(set.insert({0, 1, 2}), "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0");
}
// Verify that we detect cases of comparators that violate transitivity.
// When the comparators below check for the presence of an optional field,
// they violate transitivity because instances that have the optional field
// compare differently with each other from how they compare with instances
// that don't have the optional field.
struct ClockTime {
absl::optional<int> hour;
int minute;
};
// `comp(a,b) && comp(b,c) && !comp(a,c)` violates transitivity.
ClockTime a = {absl::nullopt, 1};
ClockTime b = {2, 5};
ClockTime c = {6, 0};
{
struct NonTransitiveTimeCmp {
bool operator()(ClockTime lhs, ClockTime rhs) const {
if (lhs.hour.has_value() && rhs.hour.has_value() &&
*lhs.hour != *rhs.hour) {
return *lhs.hour < *rhs.hour;
}
return lhs.minute < rhs.minute;
}
};
NonTransitiveTimeCmp cmp;
ASSERT_TRUE(cmp(a, b) && cmp(b, c) && !cmp(a, c));
absl::btree_set<ClockTime, NonTransitiveTimeCmp> set;
EXPECT_DEATH(set.insert({a, b, c}), "is_ordered_correctly");
absl::btree_multiset<ClockTime, NonTransitiveTimeCmp> mset;
EXPECT_DEATH(mset.insert({a, a, b, b, c, c}), "is_ordered_correctly");
}
{
struct ThreeWayNonTransitiveTimeCmp {
absl::weak_ordering operator()(ClockTime lhs, ClockTime rhs) const {
if (lhs.hour.has_value() && rhs.hour.has_value() &&
*lhs.hour != *rhs.hour) {
return *lhs.hour < *rhs.hour ? absl::weak_ordering::less
: absl::weak_ordering::greater;
}
return lhs.minute < rhs.minute ? absl::weak_ordering::less
: lhs.minute == rhs.minute ? absl::weak_ordering::equivalent
: absl::weak_ordering::greater;
}
};
ThreeWayNonTransitiveTimeCmp cmp;
ASSERT_TRUE(cmp(a, b) < 0 && cmp(b, c) < 0 && cmp(a, c) > 0);
absl::btree_set<ClockTime, ThreeWayNonTransitiveTimeCmp> set;
EXPECT_DEATH(set.insert({a, b, c}), "is_ordered_correctly");
absl::btree_multiset<ClockTime, ThreeWayNonTransitiveTimeCmp> mset;
EXPECT_DEATH(mset.insert({a, a, b, b, c, c}), "is_ordered_correctly");
}
}
TEST(Btree, MutatedKeysCaught) {
if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled.";
struct IntPtrCmp {
bool operator()(int *lhs, int *rhs) const { return *lhs < *rhs; }
};
{
absl::btree_set<int *, IntPtrCmp> set;
int arr[] = {0, 1, 2};
set.insert({&arr[0], &arr[1], &arr[2]});
arr[0] = 100;
EXPECT_DEATH(set.insert(&arr[0]), "is_ordered_correctly");
}
{
absl::btree_multiset<int *, IntPtrCmp> set;
int arr[] = {0, 1, 2};
set.insert({&arr[0], &arr[0], &arr[1], &arr[1], &arr[2], &arr[2]});
arr[0] = 100;
EXPECT_DEATH(set.insert(&arr[0]), "is_ordered_correctly");
}
}
#ifndef _MSC_VER
// This test crashes on MSVC.
TEST(Btree, InvalidIteratorUse) {
if (!BtreeGenerationsEnabled())
GTEST_SKIP() << "Generation validation for iterators is disabled.";
// Invalid memory use can trigger use-after-free in ASan, HWASAN or
// invalidated iterator assertions.
constexpr const char *kInvalidMemoryDeathMessage =
"use-after-free|invalidated iterator";
{
absl::btree_set<int> set;
for (int i = 0; i < 10; ++i) set.insert(i);
auto it = set.begin();
set.erase(it++);
EXPECT_DEATH(set.erase(it++), kInvalidMemoryDeathMessage);
}
{
absl::btree_set<int> set;
for (int i = 0; i < 10; ++i) set.insert(i);
auto it = set.insert(20).first;
set.insert(30);
EXPECT_DEATH(*it, kInvalidMemoryDeathMessage);
}
{
absl::btree_set<int> set;
for (int i = 0; i < 10000; ++i) set.insert(i);
auto it = set.find(5000);
ASSERT_NE(it, set.end());
set.erase(1);
EXPECT_DEATH(*it, kInvalidMemoryDeathMessage);
}
{
absl::btree_set<int> set;
for (int i = 0; i < 10; ++i) set.insert(i);
auto it = set.insert(20).first;
set.insert(30);
EXPECT_DEATH(void(it == set.begin()), kInvalidMemoryDeathMessage);
EXPECT_DEATH(void(set.begin() == it), kInvalidMemoryDeathMessage);
}
}
#endif
class OnlyConstructibleByAllocator {
explicit OnlyConstructibleByAllocator(int i) : i_(i) {}
public:
OnlyConstructibleByAllocator(const OnlyConstructibleByAllocator &other)
: i_(other.i_) {}
OnlyConstructibleByAllocator &operator=(
const OnlyConstructibleByAllocator &other) {
i_ = other.i_;
return *this;
}
int Get() const { return i_; }
bool operator==(int i) const { return i_ == i; }
private:
template <typename T>
friend class OnlyConstructibleAllocator;
int i_;
};
template <typename T = OnlyConstructibleByAllocator>
class OnlyConstructibleAllocator : public std::allocator<T> {
public:
OnlyConstructibleAllocator() = default;
template <class U>
explicit OnlyConstructibleAllocator(const OnlyConstructibleAllocator<U> &) {}
void construct(OnlyConstructibleByAllocator *p, int i) {
new (p) OnlyConstructibleByAllocator(i);
}
template <typename Pair>
void construct(Pair *p, const int i) {
OnlyConstructibleByAllocator only(i);
new (p) Pair(std::move(only), i);
}
template <class U>
struct rebind {
using other = OnlyConstructibleAllocator<U>;
};
};
struct OnlyConstructibleByAllocatorComp {
using is_transparent = void;
bool operator()(OnlyConstructibleByAllocator a,
OnlyConstructibleByAllocator b) const {
return a.Get() < b.Get();
}
bool operator()(int a, OnlyConstructibleByAllocator b) const {
return a < b.Get();
}
bool operator()(OnlyConstructibleByAllocator a, int b) const {
return a.Get() < b;
}
};
TEST(Btree, OnlyConstructibleByAllocatorType) {
const std::array<int, 2> arr = {3, 4};
{
absl::btree_set<OnlyConstructibleByAllocator,
OnlyConstructibleByAllocatorComp,
OnlyConstructibleAllocator<>>
set;
set.emplace(1);
set.emplace_hint(set.end(), 2);
set.insert(arr.begin(), arr.end());
EXPECT_THAT(set, ElementsAre(1, 2, 3, 4));
}
{
absl::btree_multiset<OnlyConstructibleByAllocator,
OnlyConstructibleByAllocatorComp,
OnlyConstructibleAllocator<>>
set;
set.emplace(1);
set.emplace_hint(set.end(), 2);
// TODO(ezb): fix insert_multi to allow this to compile.
// set.insert(arr.begin(), arr.end());
EXPECT_THAT(set, ElementsAre(1, 2));
}
{
absl::btree_map<OnlyConstructibleByAllocator, int,
OnlyConstructibleByAllocatorComp,
OnlyConstructibleAllocator<>>
map;
map.emplace(1);
map.emplace_hint(map.end(), 2);
map.insert(arr.begin(), arr.end());
EXPECT_THAT(map,
ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(4, 4)));
}
{
absl::btree_multimap<OnlyConstructibleByAllocator, int,
OnlyConstructibleByAllocatorComp,
OnlyConstructibleAllocator<>>
map;
map.emplace(1);
map.emplace_hint(map.end(), 2);
// TODO(ezb): fix insert_multi to allow this to compile.
// map.insert(arr.begin(), arr.end());
EXPECT_THAT(map, ElementsAre(Pair(1, 1), Pair(2, 2)));
}
}
class NotAssignable {
public:
explicit NotAssignable(int i) : i_(i) {}
NotAssignable(const NotAssignable &other) : i_(other.i_) {}
NotAssignable &operator=(NotAssignable &&other) = delete;
int Get() const { return i_; }
bool operator==(int i) const { return i_ == i; }
friend bool operator<(NotAssignable a, NotAssignable b) {
return a.i_ < b.i_;
}
private:
int i_;
};
TEST(Btree, NotAssignableType) {
{
absl::btree_set<NotAssignable> set;
set.emplace(1);
set.emplace_hint(set.end(), 2);
set.insert(NotAssignable(3));
set.insert(set.end(), NotAssignable(4));
EXPECT_THAT(set, ElementsAre(1, 2, 3, 4));
set.erase(set.begin());
EXPECT_THAT(set, ElementsAre(2, 3, 4));
}
{
absl::btree_multiset<NotAssignable> set;
set.emplace(1);
set.emplace_hint(set.end(), 2);
set.insert(NotAssignable(2));
set.insert(set.end(), NotAssignable(3));
EXPECT_THAT(set, ElementsAre(1, 2, 2, 3));
set.erase(set.begin());
EXPECT_THAT(set, ElementsAre(2, 2, 3));
}
{
absl::btree_map<NotAssignable, int> map;
map.emplace(NotAssignable(1), 1);
map.emplace_hint(map.end(), NotAssignable(2), 2);
map.insert({NotAssignable(3), 3});
map.insert(map.end(), {NotAssignable(4), 4});
EXPECT_THAT(map,
ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(4, 4)));
map.erase(map.begin());
EXPECT_THAT(map, ElementsAre(Pair(2, 2), Pair(3, 3), Pair(4, 4)));
}
{
absl::btree_multimap<NotAssignable, int> map;
map.emplace(NotAssignable(1), 1);
map.emplace_hint(map.end(), NotAssignable(2), 2);
map.insert({NotAssignable(2), 3});
map.insert(map.end(), {NotAssignable(3), 3});
EXPECT_THAT(map,
ElementsAre(Pair(1, 1), Pair(2, 2), Pair(2, 3), Pair(3, 3)));
map.erase(map.begin());
EXPECT_THAT(map, ElementsAre(Pair(2, 2), Pair(2, 3), Pair(3, 3)));
}
}
struct ArenaLike {
void* recycled = nullptr;
size_t recycled_size = 0;
};
// A very simple implementation of arena allocation.
template <typename T>
class ArenaLikeAllocator : public std::allocator<T> {
public:
// Standard library containers require the ability to allocate objects of
// different types which they can do so via rebind.other.
template <typename U>
struct rebind {
using other = ArenaLikeAllocator<U>;
};
explicit ArenaLikeAllocator(ArenaLike* arena) noexcept : arena_(arena) {}
~ArenaLikeAllocator() {
if (arena_->recycled != nullptr) {
delete [] static_cast<T*>(arena_->recycled);
arena_->recycled = nullptr;
}
}
template<typename U>
explicit ArenaLikeAllocator(const ArenaLikeAllocator<U>& other) noexcept
: arena_(other.arena_) {}
T* allocate(size_t num_objects, const void* = nullptr) {
size_t size = num_objects * sizeof(T);
if (arena_->recycled != nullptr && arena_->recycled_size == size) {
T* result = static_cast<T*>(arena_->recycled);
arena_->recycled = nullptr;
return result;
}
return new T[num_objects];
}
void deallocate(T* p, size_t num_objects) {
size_t size = num_objects * sizeof(T);
// Simulate writing to the freed memory as an actual arena allocator might
// do. This triggers an error report if the memory is poisoned.
memset(p, 0xde, size);
if (arena_->recycled == nullptr) {
arena_->recycled = p;
arena_->recycled_size = size;
} else {
delete [] p;
}
}
ArenaLike* arena_;
};
// This test verifies that an arena allocator that reuses memory will not be
// asked to free poisoned BTree memory.
TEST(Btree, ReusePoisonMemory) {
using Alloc = ArenaLikeAllocator<int64_t>;
using Set = absl::btree_set<int64_t, std::less<int64_t>, Alloc>;
ArenaLike arena;
Alloc alloc(&arena);
Set set(alloc);
set.insert(0);
set.erase(0);
set.insert(0);
}
TEST(Btree, IteratorSubtraction) {
absl::BitGen bitgen;
std::vector<int> vec;
// Randomize the set's insertion order so the nodes aren't all full.
for (int i = 0; i < 1000000; ++i) vec.push_back(i);
absl::c_shuffle(vec, bitgen);
absl::btree_set<int> set;
for (int i : vec) set.insert(i);
for (int i = 0; i < 1000; ++i) {
size_t begin = absl::Uniform(bitgen, 0u, set.size());
size_t end = absl::Uniform(bitgen, begin, set.size());
ASSERT_EQ(end - begin, set.find(end) - set.find(begin))
<< begin << " " << end;
}
}
TEST(Btree, DereferencingEndIterator) {
if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled.";
absl::btree_set<int> set;
for (int i = 0; i < 1000; ++i) set.insert(i);
EXPECT_DEATH(*set.end(), R"regex(Dereferencing end\(\) iterator)regex");
}
TEST(Btree, InvalidIteratorComparison) {
if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled.";
absl::btree_set<int> set1, set2;
for (int i = 0; i < 1000; ++i) {
set1.insert(i);
set2.insert(i);
}
constexpr const char *kValueInitDeathMessage =
"Comparing default-constructed iterator with .*non-default-constructed "
"iterator";
typename absl::btree_set<int>::iterator iter1, iter2;
EXPECT_EQ(iter1, iter2);
EXPECT_DEATH(void(set1.begin() == iter1), kValueInitDeathMessage);
EXPECT_DEATH(void(iter1 == set1.begin()), kValueInitDeathMessage);
constexpr const char *kDifferentContainerDeathMessage =
"Comparing iterators from different containers";
iter1 = set1.begin();
iter2 = set2.begin();
EXPECT_DEATH(void(iter1 == iter2), kDifferentContainerDeathMessage);
EXPECT_DEATH(void(iter2 == iter1), kDifferentContainerDeathMessage);
}
TEST(Btree, InvalidPointerUse) {
if (!kAsan)
GTEST_SKIP() << "We only detect invalid pointer use in ASan mode.";
absl::btree_set<int> set;
set.insert(0);
const int *ptr = &*set.begin();
set.insert(1);
EXPECT_DEATH(std::cout << *ptr, "use-after-free");
size_t slots_per_node = BtreeNodePeer::GetNumSlotsPerNode<decltype(set)>();
for (int i = 2; i < slots_per_node - 1; ++i) set.insert(i);
ptr = &*set.begin();
set.insert(static_cast<int>(slots_per_node));
EXPECT_DEATH(std::cout << *ptr, "use-after-free");
}
template<typename Set>
void TestBasicFunctionality(Set set) {
using value_type = typename Set::value_type;
for (int i = 0; i < 100; ++i) { set.insert(value_type(i)); }
for (int i = 50; i < 100; ++i) { set.erase(value_type(i)); }
auto it = set.begin();
for (int i = 0; i < 50; ++i, ++it) {
ASSERT_EQ(set.find(value_type(i)), it) << i;
}
}
template<size_t align>
struct alignas(align) OveralignedKey {
explicit OveralignedKey(int i) : key(i) {}
bool operator<(const OveralignedKey &other) const { return key < other.key; }
int key = 0;
};
TEST(Btree, OveralignedKey) {
// Test basic functionality with both even and odd numbers of slots per node.
// The goal here is to detect cases where alignment may be incorrect.
TestBasicFunctionality(
SizedBtreeSet<OveralignedKey<16>, /*TargetValuesPerNode=*/8>());
TestBasicFunctionality(
SizedBtreeSet<OveralignedKey<16>, /*TargetValuesPerNode=*/9>());
}
TEST(Btree, FieldTypeEqualsSlotType) {
// This breaks if we try to do layout_type::Pointer<slot_type> because
// slot_type is the same as field_type.
using set_type = absl::btree_set<uint8_t>;
static_assert(BtreeNodePeer::FieldTypeEqualsSlotType<set_type>(), "");
TestBasicFunctionality(set_type());
}
} // namespace
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl