// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: memory.h // ----------------------------------------------------------------------------- // // This header file contains utility functions for managing the creation and // conversion of smart pointers. This file is an extension to the C++ // standard <memory> library header file. #ifndef ABSL_MEMORY_MEMORY_H_ #define ABSL_MEMORY_MEMORY_H_ #include <cstddef> #include <limits> #include <memory> #include <new> #include <type_traits> #include <utility> #include "absl/base/macros.h" #include "absl/meta/type_traits.h" namespace absl { ABSL_NAMESPACE_BEGIN // ----------------------------------------------------------------------------- // Function Template: WrapUnique() // ----------------------------------------------------------------------------- // // Adopts ownership from a raw pointer and transfers it to the returned // `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not* // specify the template type `T` when calling `WrapUnique`. // // Example: // X* NewX(int, int); // auto x = WrapUnique(NewX(1, 2)); // 'x' is std::unique_ptr<X>. // // Do not call WrapUnique with an explicit type, as in // `WrapUnique<X>(NewX(1, 2))`. The purpose of WrapUnique is to automatically // deduce the pointer type. If you wish to make the type explicit, just use // `std::unique_ptr` directly. // // auto x = std::unique_ptr<X>(NewX(1, 2)); // - or - // std::unique_ptr<X> x(NewX(1, 2)); // // While `absl::WrapUnique` is useful for capturing the output of a raw // pointer factory, prefer 'absl::make_unique<T>(args...)' over // 'absl::WrapUnique(new T(args...))'. // // auto x = WrapUnique(new X(1, 2)); // works, but nonideal. // auto x = make_unique<X>(1, 2); // safer, standard, avoids raw 'new'. // // Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid // expression. In particular, `absl::WrapUnique()` cannot wrap pointers to // arrays, functions or void, and it must not be used to capture pointers // obtained from array-new expressions (even though that would compile!). template <typename T> std::unique_ptr<T> WrapUnique(T* ptr) { … } // ----------------------------------------------------------------------------- // Function Template: make_unique<T>() // ----------------------------------------------------------------------------- // // Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries // during the construction process. `absl::make_unique<>` also avoids redundant // type declarations, by avoiding the need to explicitly use the `new` operator. // // https://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique // // For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic, // see Herb Sutter's explanation on // (Exception-Safe Function Calls)[https://herbsutter.com/gotw/_102/]. // (In general, reviewers should treat `new T(a,b)` with scrutiny.) // // Historical note: Abseil once provided a C++11 compatible implementation of // the C++14's `std::make_unique`. Now that C++11 support has been sunsetted, // `absl::make_unique` simply uses the STL-provided implementation. New code // should use `std::make_unique`. make_unique; // ----------------------------------------------------------------------------- // Function Template: RawPtr() // ----------------------------------------------------------------------------- // // Extracts the raw pointer from a pointer-like value `ptr`. `absl::RawPtr` is // useful within templates that need to handle a complement of raw pointers, // `std::nullptr_t`, and smart pointers. template <typename T> auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) { … } inline std::nullptr_t RawPtr(std::nullptr_t) { … } // ----------------------------------------------------------------------------- // Function Template: ShareUniquePtr() // ----------------------------------------------------------------------------- // // Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced // type. Ownership (if any) of the held value is transferred to the returned // shared pointer. // // Example: // // auto up = absl::make_unique<int>(10); // auto sp = absl::ShareUniquePtr(std::move(up)); // shared_ptr<int> // CHECK_EQ(*sp, 10); // CHECK(up == nullptr); // // Note that this conversion is correct even when T is an array type, and more // generally it works for *any* deleter of the `unique_ptr` (single-object // deleter, array deleter, or any custom deleter), since the deleter is adopted // by the shared pointer as well. The deleter is copied (unless it is a // reference). // // Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a // null shared pointer does not attempt to call the deleter. template <typename T, typename D> std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) { … } // ----------------------------------------------------------------------------- // Function Template: WeakenPtr() // ----------------------------------------------------------------------------- // // Creates a weak pointer associated with a given shared pointer. The returned // value is a `std::weak_ptr` of deduced type. // // Example: // // auto sp = std::make_shared<int>(10); // auto wp = absl::WeakenPtr(sp); // CHECK_EQ(sp.get(), wp.lock().get()); // sp.reset(); // CHECK(wp.lock() == nullptr); // template <typename T> std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) { … } // ----------------------------------------------------------------------------- // Class Template: pointer_traits // ----------------------------------------------------------------------------- // // Historical note: Abseil once provided an implementation of // `std::pointer_traits` for platforms that had not yet provided it. Those // platforms are no longer supported. New code should simply use // `std::pointer_traits`. pointer_traits; // ----------------------------------------------------------------------------- // Class Template: allocator_traits // ----------------------------------------------------------------------------- // // Historical note: Abseil once provided an implementation of // `std::allocator_traits` for platforms that had not yet provided it. Those // platforms are no longer supported. New code should simply use // `std::allocator_traits`. allocator_traits; namespace memory_internal { // ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D. template <template <typename> class Extract, typename Obj, typename Default, typename> struct ExtractOr { … }; ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>>; ExtractOrT; // This template alias transforms Alloc::is_nothrow into a metafunction with // Alloc as a parameter so it can be used with ExtractOrT<>. GetIsNothrow; } // namespace memory_internal // ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to // specify whether the default allocation function can throw or never throws. // If the allocation function never throws, user should define it to a non-zero // value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`). // If the allocation function can throw, user should leave it undefined or // define it to zero. // // allocator_is_nothrow<Alloc> is a traits class that derives from // Alloc::is_nothrow if present, otherwise std::false_type. It's specialized // for Alloc = std::allocator<T> for any type T according to the state of // ABSL_ALLOCATOR_NOTHROW. // // default_allocator_is_nothrow is a class that derives from std::true_type // when the default allocator (global operator new) never throws, and // std::false_type when it can throw. It is a convenience shorthand for writing // allocator_is_nothrow<std::allocator<T>> (T can be any type). // NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from // the same type for all T, because users should specialize neither // allocator_is_nothrow nor std::allocator. template <typename Alloc> struct allocator_is_nothrow : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc, std::false_type> { … }; #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW template <typename T> struct allocator_is_nothrow<std::allocator<T>> : std::true_type {}; struct default_allocator_is_nothrow : std::true_type {}; #else struct default_allocator_is_nothrow : std::false_type { … }; #endif namespace memory_internal { template <typename Allocator, typename Iterator, typename... Args> void ConstructRange(Allocator& alloc, Iterator first, Iterator last, const Args&... args) { … } template <typename Allocator, typename Iterator, typename InputIterator> void CopyRange(Allocator& alloc, Iterator destination, InputIterator first, InputIterator last) { … } } // namespace memory_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_MEMORY_MEMORY_H_