// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_ #define ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_ #include <cstddef> #include <iostream> #include <vector> #include "absl/strings/string_view.h" #include "absl/types/span.h" // NOTE: The functions in this file are test only, and are should not be used in // non-test code. namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { // http://webspace.ship.edu/pgmarr/Geo441/Lectures/Lec%205%20-%20Normality%20Testing.pdf // Compute the 1st to 4th standard moments: // mean, variance, skewness, and kurtosis. // http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm struct DistributionMoments { … }; DistributionMoments ComputeDistributionMoments( absl::Span<const double> data_points); std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments); // Computes the Z-score for a set of data with the given distribution moments // compared against `expected_mean`. double ZScore(double expected_mean, const DistributionMoments& moments); // Returns the probability of success required for a single trial to ensure that // after `num_trials` trials, the probability of at least one failure is no more // than `p_fail`. double RequiredSuccessProbability(double p_fail, int num_trials); // Computes the maximum distance from the mean tolerable, for Z-Tests that are // expected to pass with `acceptance_probability`. Will terminate if the // resulting tolerance is zero (due to passing in 0.0 for // `acceptance_probability` or rounding errors). // // For example, // MaxErrorTolerance(0.001) = 0.0 // MaxErrorTolerance(0.5) = ~0.47 // MaxErrorTolerance(1.0) = inf double MaxErrorTolerance(double acceptance_probability); // Approximation to inverse of the Error Function in double precision. // (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf) double erfinv(double x); // Beta(p, q) = Gamma(p) * Gamma(q) / Gamma(p+q) double beta(double p, double q); // The inverse of the normal survival function. double InverseNormalSurvival(double x); // Returns whether actual is "near" expected, based on the bound. bool Near(absl::string_view msg, double actual, double expected, double bound); // Implements the incomplete regularized beta function, AS63, BETAIN. // https://www.jstor.org/stable/2346797 // // BetaIncomplete(x, p, q), where // `x` is the value of the upper limit // `p` is beta parameter p, `q` is beta parameter q. // // NOTE: This is a test-only function which is only accurate to within, at most, // 1e-13 of the actual value. // double BetaIncomplete(double x, double p, double q); // Implements the inverse of the incomplete regularized beta function, AS109, // XINBTA. // https://www.jstor.org/stable/2346798 // https://www.jstor.org/stable/2346887 // // BetaIncompleteInv(p, q, beta, alhpa) // `p` is beta parameter p, `q` is beta parameter q. // `alpha` is the value of the lower tail area. // // NOTE: This is a test-only function and, when successful, is only accurate to // within ~1e-6 of the actual value; there are some cases where it diverges from // the actual value by much more than that. The function uses Newton's method, // and thus the runtime is highly variable. double BetaIncompleteInv(double p, double q, double alpha); } // namespace random_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_