// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// https://www.w3.org/TR/webnn/
typedef record<USVString, MLOperand> MLNamedOperands;
enum MLInputOperandLayout { "nchw", "nhwc" };
enum MLConv2dFilterOperandLayout { "oihw", "hwio", "ohwi", "ihwo" };
enum MLConvTranspose2dFilterOperandLayout { "iohw", "hwoi", "ohwi" };
enum MLRecurrentNetworkActivation { "relu", "sigmoid", "tanh" };
enum MLRecurrentNetworkDirection { "forward", "backward", "both" };
enum MLLstmWeightLayout { "iofg", "ifgo" };
enum MLGruWeightLayout { "zrn", "rzn" };
dictionary MLOperatorOptions {
USVString label = "";
};
dictionary MLArgMinMaxOptions : MLOperatorOptions {
boolean keepDimensions = false;
// See spec issue https://github.com/webmachinelearning/webnn/issues/653.
MLOperandDataType outputDataType = "int32";
};
// A spec file was issued for WG discussion:
// https://github.com/webmachinelearning/webnn/issues/481.
// TODO(crbug.com/1502361): Revisit whether the scale and bias operands
// should be required inputs based on WG's consensus.
dictionary MLBatchNormalizationOptions : MLOperatorOptions {
MLOperand scale;
MLOperand bias;
[EnforceRange] unsigned long axis = 1;
float epsilon = 1e-5;
};
dictionary MLConv2dOptions : MLOperatorOptions {
sequence<[EnforceRange] unsigned long> padding;
sequence<[EnforceRange] unsigned long> strides;
sequence<[EnforceRange] unsigned long> dilations;
[EnforceRange] unsigned long groups = 1;
MLInputOperandLayout inputLayout = "nchw";
MLConv2dFilterOperandLayout filterLayout = "oihw";
MLOperand bias;
};
dictionary MLConvTranspose2dOptions : MLOperatorOptions {
sequence<[EnforceRange] unsigned long> padding;
sequence<[EnforceRange] unsigned long> strides;
sequence<[EnforceRange] unsigned long> dilations;
sequence<[EnforceRange] unsigned long> outputPadding;
sequence<[EnforceRange] unsigned long> outputSizes;
[EnforceRange] unsigned long groups = 1;
MLInputOperandLayout inputLayout = "nchw";
MLConvTranspose2dFilterOperandLayout filterLayout = "iohw";
MLOperand bias;
};
dictionary MLGatherOptions : MLOperatorOptions {
[EnforceRange] unsigned long axis = 0;
};
dictionary MLGemmOptions : MLOperatorOptions {
MLOperand c;
float alpha = 1.0;
float beta = 1.0;
boolean aTranspose = false;
boolean bTranspose = false;
};
dictionary MLGruOptions : MLOperatorOptions {
MLOperand bias;
MLOperand recurrentBias;
MLOperand initialHiddenState;
boolean resetAfter = true;
boolean returnSequence = false;
MLRecurrentNetworkDirection direction = "forward";
MLGruWeightLayout layout = "zrn";
sequence<MLRecurrentNetworkActivation> activations;
};
dictionary MLGruCellOptions : MLOperatorOptions {
MLOperand bias;
MLOperand recurrentBias;
boolean resetAfter = true;
MLGruWeightLayout layout = "zrn";
sequence<MLRecurrentNetworkActivation> activations;
};
dictionary MLHardSigmoidOptions : MLOperatorOptions {
float alpha = 0.2;
float beta = 0.5;
};
dictionary MLLayerNormalizationOptions : MLOperatorOptions {
MLOperand scale;
MLOperand bias;
sequence<[EnforceRange] unsigned long> axes;
float epsilon = 1e-5;
};
dictionary MLLeakyReluOptions : MLOperatorOptions {
float alpha = 0.01;
};
dictionary MLLinearOptions : MLOperatorOptions {
float alpha = 1.0;
float beta = 0;
};
dictionary MLLstmOptions : MLOperatorOptions {
MLOperand bias;
MLOperand recurrentBias;
MLOperand peepholeWeight;
MLOperand initialHiddenState;
MLOperand initialCellState;
boolean returnSequence = false;
MLRecurrentNetworkDirection direction = "forward";
MLLstmWeightLayout layout = "iofg";
sequence<MLRecurrentNetworkActivation> activations;
};
dictionary MLLstmCellOptions : MLOperatorOptions {
MLOperand bias;
MLOperand recurrentBias;
MLOperand peepholeWeight;
MLLstmWeightLayout layout = "iofg";
sequence<MLRecurrentNetworkActivation> activations;
};
enum MLPaddingMode {
"constant",
"edge",
"reflection",
"symmetric"
};
dictionary MLPadOptions : MLOperatorOptions {
MLPaddingMode mode = "constant";
float value = 0;
};
enum MLRoundingType {
"floor",
"ceil"
};
dictionary MLPool2dOptions : MLOperatorOptions {
sequence<[EnforceRange] unsigned long> windowDimensions;
sequence<[EnforceRange] unsigned long> padding;
sequence<[EnforceRange] unsigned long> strides;
sequence<[EnforceRange] unsigned long> dilations;
MLInputOperandLayout layout = "nchw";
MLRoundingType roundingType = "floor";
sequence<[EnforceRange] unsigned long> outputSizes;
};
dictionary MLClampOptions : MLOperatorOptions {
float minValue;
float maxValue;
};
dictionary MLEluOptions : MLOperatorOptions {
float alpha = 1;
};
dictionary MLInstanceNormalizationOptions : MLOperatorOptions {
MLOperand scale;
MLOperand bias;
float epsilon = 1e-5;
MLInputOperandLayout layout = "nchw";
};
dictionary MLReduceOptions : MLOperatorOptions {
sequence<[EnforceRange] unsigned long> axes;
boolean keepDimensions = false;
};
enum MLInterpolationMode {"nearest-neighbor", "linear" };
dictionary MLResample2dOptions : MLOperatorOptions {
MLInterpolationMode mode = "nearest-neighbor";
sequence<float> scales;
sequence<[EnforceRange] unsigned long> sizes;
sequence<[EnforceRange] unsigned long> axes;
};
dictionary MLTransposeOptions : MLOperatorOptions {
sequence<[EnforceRange] unsigned long> permutation;
};
dictionary MLSplitOptions : MLOperatorOptions {
[EnforceRange] unsigned long axis = 0;
};
dictionary MLTriangularOptions : MLOperatorOptions {
boolean upper = true;
[EnforceRange] long diagonal = 0;
};
[
RuntimeEnabled=MachineLearningNeuralNetwork,
Exposed=(Window, DedicatedWorker)
] interface MLGraphBuilder {
[
CallWith=ScriptState,
RaisesException
] constructor(MLContext context);
[RaisesException] MLOperand input(USVString name, MLOperandDescriptor desc);
[RaisesException] MLOperand constant(MLOperandDescriptor desc, ArrayBufferView bufferView);
[RaisesException] MLOperand argMin(MLOperand input, [EnforceRange] unsigned long axis, optional MLArgMinMaxOptions options = {});
[RaisesException] MLOperand argMax(MLOperand input, [EnforceRange] unsigned long axis, optional MLArgMinMaxOptions options = {});
[RaisesException] MLOperand batchNormalization(MLOperand input, MLOperand mean, MLOperand variance, optional MLBatchNormalizationOptions options = {});
[RaisesException] MLOperand clamp(MLOperand input, optional MLClampOptions options = {});
[RaisesException] MLOperand concat(sequence<MLOperand> inputs, [EnforceRange] unsigned long axis, optional MLOperatorOptions options = {});
[RaisesException] MLOperand conv2d(MLOperand input, MLOperand filter, optional MLConv2dOptions options = {});
[RaisesException] MLOperand convTranspose2d(MLOperand input, MLOperand filter, optional MLConvTranspose2dOptions options = {});
// Element-wise binary operations
[RaisesException] MLOperand add(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
[RaisesException] MLOperand sub(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
[RaisesException] MLOperand mul(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
[RaisesException] MLOperand div(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
[RaisesException] MLOperand max(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
[RaisesException] MLOperand min(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
[RaisesException] MLOperand pow(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
[RaisesException] MLOperand equal(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
[RaisesException] MLOperand greater(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
[RaisesException] MLOperand greaterOrEqual(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
[RaisesException] MLOperand lesser(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
[RaisesException] MLOperand lesserOrEqual(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
// Element-wise unary operations
[RaisesException] MLOperand abs(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand ceil(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand cos(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand exp(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand floor(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand log(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand neg(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand sign(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand sin(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand tan(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand erf(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand identity(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand logicalNot(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand reciprocal(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand sqrt(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand cast(MLOperand input, MLOperandDataType outputDataType, optional MLOperatorOptions options = {});
[RaisesException] MLOperand elu(MLOperand x, optional MLEluOptions options = {});
[RaisesException] MLOperand expand(MLOperand input, sequence<[EnforceRange] unsigned long> newShape, optional MLOperatorOptions options = {});
[RaisesException] MLOperand gather(MLOperand input, MLOperand indices, optional MLGatherOptions options = {});
[RaisesException] MLOperand gatherElements(MLOperand input, MLOperand indices, optional MLGatherOptions options = {});
[RaisesException] MLOperand gelu(MLOperand input, optional MLOperatorOptions options = {});
[RaisesException] MLOperand gemm(MLOperand a, MLOperand b, optional MLGemmOptions options = {});
[RaisesException] sequence<MLOperand> gru(MLOperand input, MLOperand weight, MLOperand recurrentWeight,
[EnforceRange] unsigned long steps, [EnforceRange] unsigned long hiddenSize,
optional MLGruOptions options = {});
[RaisesException] MLOperand gruCell(MLOperand input, MLOperand weight, MLOperand recurrentWeight, MLOperand hiddenState,
[EnforceRange] unsigned long hiddenSize, optional MLGruCellOptions options = {});
[RaisesException] MLOperand hardSigmoid(MLOperand x, optional MLHardSigmoidOptions options = {});
[RaisesException] MLOperand hardSwish(MLOperand x, optional MLOperatorOptions options = {});
[RaisesException] MLOperand instanceNormalization(MLOperand input, optional MLInstanceNormalizationOptions options = {});
[RaisesException] MLOperand matmul(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
[RaisesException] MLOperand layerNormalization(MLOperand input, optional MLLayerNormalizationOptions options = {});
[RaisesException] MLOperand leakyRelu(MLOperand x, optional MLLeakyReluOptions options = {});
[RaisesException] MLOperand linear(MLOperand input, optional MLLinearOptions options = {});
[RaisesException] sequence<MLOperand> lstm(MLOperand input, MLOperand weight, MLOperand recurrentWeight,
[EnforceRange] unsigned long steps, [EnforceRange] unsigned long hiddenSize,
optional MLLstmOptions options = {});
[RaisesException] sequence<MLOperand> lstmCell(MLOperand input, MLOperand weight, MLOperand recurrentWeight,
MLOperand hiddenState, MLOperand cellState, [EnforceRange] unsigned long hiddenSize,
optional MLLstmCellOptions options = {});
[
CallWith=ScriptState,
RaisesException
] MLOperand pad(MLOperand input, sequence<[EnforceRange] unsigned long> beginningPadding,
sequence<[EnforceRange] unsigned long> endingPadding, optional MLPadOptions options = {});
// Pooling operations
[RaisesException] MLOperand averagePool2d(MLOperand input, optional MLPool2dOptions options = {});
[RaisesException] MLOperand l2Pool2d(MLOperand input, optional MLPool2dOptions options = {});
[RaisesException] MLOperand maxPool2d(MLOperand input, optional MLPool2dOptions options = {});
[RaisesException] MLOperand prelu(MLOperand x, MLOperand slope, optional MLOperatorOptions options = {});
[RaisesException] MLOperand reduceL1(MLOperand input, optional MLReduceOptions options = {});
[RaisesException] MLOperand reduceL2(MLOperand input, optional MLReduceOptions options = {});
[RaisesException] MLOperand reduceLogSum(MLOperand input, optional MLReduceOptions options = {});
[RaisesException] MLOperand reduceLogSumExp(MLOperand input, optional MLReduceOptions options = {});
[RaisesException] MLOperand reduceMax(MLOperand input, optional MLReduceOptions options = {});
[RaisesException] MLOperand reduceMean(MLOperand input, optional MLReduceOptions options = {});
[RaisesException] MLOperand reduceMin(MLOperand input, optional MLReduceOptions options = {});
[RaisesException] MLOperand reduceProduct(MLOperand input, optional MLReduceOptions options = {});
[RaisesException] MLOperand reduceSum(MLOperand input, optional MLReduceOptions options = {});
[RaisesException] MLOperand reduceSumSquare(MLOperand input, optional MLReduceOptions options = {});
[RaisesException] MLOperand relu(MLOperand input, optional MLOperatorOptions options = {});
[RaisesException] MLOperand reshape(MLOperand input, sequence<[EnforceRange] unsigned long> newShape, optional MLOperatorOptions options = {});
[
CallWith=ScriptState,
RaisesException
] MLOperand resample2d(MLOperand input, optional MLResample2dOptions options = {});
[RaisesException] MLOperand sigmoid(MLOperand input, optional MLOperatorOptions options = {});
[RaisesException] MLOperand slice(MLOperand input, sequence<[EnforceRange] unsigned long> starts, sequence<[EnforceRange] unsigned long> sizes, optional MLOperatorOptions options = {});
// TODO: crbug.com/342919187 - Remove the deprecated version once ort-web 1.18.* supporting softmax(input, aixs) is released.
[RaisesException] MLOperand softmax(MLOperand input, optional MLOperatorOptions options = {});
[RaisesException] MLOperand softmax(MLOperand input, [EnforceRange] unsigned long axis, optional MLOperatorOptions options = {});
[RaisesException] MLOperand softplus(MLOperand input, optional MLOperatorOptions options = {});
[RaisesException] MLOperand softsign(MLOperand input, optional MLOperatorOptions options = {});
[RaisesException] sequence<MLOperand> split(MLOperand input, [EnforceRange] unsigned long splits, optional MLSplitOptions options = {});
[RaisesException] sequence<MLOperand> split(MLOperand input, sequence<[EnforceRange] unsigned long> splits, optional MLSplitOptions options = {});
[RaisesException] MLOperand tanh(MLOperand input, optional MLOperatorOptions options = {});
[RaisesException] MLOperand transpose(
MLOperand input, optional MLTransposeOptions options = {});
[RaisesException] MLOperand triangular(MLOperand input, optional MLTriangularOptions options = {});
[RaisesException] MLOperand where(MLOperand condition, MLOperand trueValue, MLOperand falseValue, optional MLOperatorOptions options = {});
[
CallWith=ScriptState,
RaisesException
] Promise<MLGraph> build(MLNamedOperands outputs);
};