/* Copyright (c) 2018, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #ifndef OPENSSL_HEADER_HRSS_H #define OPENSSL_HEADER_HRSS_H #include <openssl/base.h> #if defined(__cplusplus) extern "C" { #endif // HRSS // // HRSS is a structured-lattice-based post-quantum key encapsulation mechanism. // The best exposition is https://eprint.iacr.org/2017/667.pdf although this // implementation uses a different KEM construction based on // https://eprint.iacr.org/2017/1005.pdf. struct HRSS_private_key { … }; struct HRSS_public_key { … }; // HRSS_SAMPLE_BYTES is the number of bytes of entropy needed to generate a // short vector. There are 701 coefficients, but the final one is always set to // zero when sampling. Otherwise, we need one byte of input per coefficient. #define HRSS_SAMPLE_BYTES … // HRSS_GENERATE_KEY_BYTES is the number of bytes of entropy needed to generate // an HRSS key pair. #define HRSS_GENERATE_KEY_BYTES … // HRSS_ENCAP_BYTES is the number of bytes of entropy needed to encapsulate a // session key. #define HRSS_ENCAP_BYTES … // HRSS_PUBLIC_KEY_BYTES is the number of bytes in a public key. #define HRSS_PUBLIC_KEY_BYTES … // HRSS_CIPHERTEXT_BYTES is the number of bytes in a ciphertext. #define HRSS_CIPHERTEXT_BYTES … // HRSS_KEY_BYTES is the number of bytes in a shared key. #define HRSS_KEY_BYTES … // HRSS_POLY3_BYTES is the number of bytes needed to serialise a mod 3 // polynomial. #define HRSS_POLY3_BYTES … #define HRSS_PRIVATE_KEY_BYTES … // HRSS_generate_key is a deterministic function that outputs a public and // private key based on the given entropy. It returns one on success or zero // on malloc failure. OPENSSL_EXPORT int HRSS_generate_key( struct HRSS_public_key *out_pub, struct HRSS_private_key *out_priv, const uint8_t input[HRSS_GENERATE_KEY_BYTES]); // HRSS_encap is a deterministic function the generates and encrypts a random // session key from the given entropy, writing those values to |out_shared_key| // and |out_ciphertext|, respectively. It returns one on success or zero on // malloc failure. OPENSSL_EXPORT int HRSS_encap(uint8_t out_ciphertext[HRSS_CIPHERTEXT_BYTES], uint8_t out_shared_key[HRSS_KEY_BYTES], const struct HRSS_public_key *in_pub, const uint8_t in[HRSS_ENCAP_BYTES]); // HRSS_decap decrypts a session key from |ciphertext_len| bytes of // |ciphertext|. If the ciphertext is valid, the decrypted key is written to // |out_shared_key|. Otherwise the HMAC of |ciphertext| under a secret key (kept // in |in_priv|) is written. If the ciphertext is the wrong length then it will // leak which was done via side-channels. Otherwise it should perform either // action in constant-time. It returns one on success (whether the ciphertext // was valid or not) and zero on malloc failure. OPENSSL_EXPORT int HRSS_decap(uint8_t out_shared_key[HRSS_KEY_BYTES], const struct HRSS_private_key *in_priv, const uint8_t *ciphertext, size_t ciphertext_len); // HRSS_marshal_public_key serialises |in_pub| to |out|. OPENSSL_EXPORT void HRSS_marshal_public_key( uint8_t out[HRSS_PUBLIC_KEY_BYTES], const struct HRSS_public_key *in_pub); // HRSS_parse_public_key sets |*out| to the public-key encoded in |in|. It // returns true on success and zero on error. OPENSSL_EXPORT int HRSS_parse_public_key( struct HRSS_public_key *out, const uint8_t in[HRSS_PUBLIC_KEY_BYTES]); #if defined(__cplusplus) } // extern C #endif #endif // OPENSSL_HEADER_HRSS_H