#ifndef FASTFLOAT_FAST_TABLE_H #define FASTFLOAT_FAST_TABLE_H #include <cstdint> namespace fast_float { /** * When mapping numbers from decimal to binary, * we go from w * 10^q to m * 2^p but we have * 10^q = 5^q * 2^q, so effectively * we are trying to match * w * 2^q * 5^q to m * 2^p. Thus the powers of two * are not a concern since they can be represented * exactly using the binary notation, only the powers of five * affect the binary significand. */ /** * The smallest non-zero float (binary64) is 2^-1074. * We take as input numbers of the form w x 10^q where w < 2^64. * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. * However, we have that * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074. * Thus it is possible for a number of the form w * 10^-342 where * w is a 64-bit value to be a non-zero floating-point number. ********* * Any number of form w * 10^309 where w>= 1 is going to be * infinite in binary64 so we never need to worry about powers * of 5 greater than 308. */ template <class unused = void> struct powers_template { … }; template <class unused> constexpr uint64_t powers_template<unused>::power_of_five_128[number_of_entries]; powers; } // namespace fast_float #endif