// © 2017 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #ifndef __NUMBER_ROUNDINGUTILS_H__ #define __NUMBER_ROUNDINGUTILS_H__ #include "number_types.h" #include "string_segment.h" U_NAMESPACE_BEGIN namespace number { namespace impl { namespace roundingutils { enum Section { … }; /** * Converts a rounding mode and metadata about the quantity being rounded to a boolean determining * whether the value should be rounded toward infinity or toward zero. * * <p>The parameters are of type int because benchmarks on an x86-64 processor against OpenJDK * showed that ints were demonstrably faster than enums in switch statements. * * @param isEven Whether the digit immediately before the rounding magnitude is even. * @param isNegative Whether the quantity is negative. * @param section Whether the part of the quantity to the right of the rounding magnitude is * exactly halfway between two digits, whether it is in the lower part (closer to zero), or * whether it is in the upper part (closer to infinity). See {@link #SECTION_LOWER}, {@link * #SECTION_MIDPOINT}, and {@link #SECTION_UPPER}. * @param roundingMode The integer version of the {@link RoundingMode}, which you can get via * {@link RoundingMode#ordinal}. * @param status Error code, set to U_FORMAT_INEXACT_ERROR if the rounding mode is kRoundUnnecessary. * @return true if the number should be rounded toward zero; false if it should be rounded toward * infinity. */ inline bool getRoundingDirection(bool isEven, bool isNegative, Section section, RoundingMode roundingMode, UErrorCode &status) { … } /** * Gets whether the given rounding mode's rounding boundary is at the midpoint. The rounding * boundary is the point at which a number switches from being rounded down to being rounded up. * For example, with rounding mode HALF_EVEN, HALF_UP, or HALF_DOWN, the rounding boundary is at * the midpoint, and this function would return true. However, for UP, DOWN, CEILING, and FLOOR, * the rounding boundary is at the "edge", and this function would return false. * * @param roundingMode The integer version of the {@link RoundingMode}. * @return true if rounding mode is HALF_EVEN, HALF_UP, or HALF_DOWN; false otherwise. */ inline bool roundsAtMidpoint(int roundingMode) { … } } // namespace roundingutils /** * Encapsulates a Precision and a RoundingMode and performs rounding on a DecimalQuantity. * * This class does not exist in Java: instead, the base Precision class is used. */ class RoundingImpl { … }; /** * Parses Precision-related skeleton strings without knowledge of MacroProps * - see blueprint_helpers::parseIncrementOption(). * * Referencing MacroProps means needing to pull in the .o files that have the * destructors for the SymbolsWrapper, StringProp, and Scale classes. */ void parseIncrementOption(const StringSegment &segment, Precision &outPrecision, UErrorCode &status); } // namespace impl } // namespace number U_NAMESPACE_END #endif //__NUMBER_ROUNDINGUTILS_H__ #endif /* #if !UCONFIG_NO_FORMATTING */