chromium/third_party/icu/source/common/uhash.cpp

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
*   Copyright (C) 1997-2016, International Business Machines
*   Corporation and others.  All Rights Reserved.
******************************************************************************
*   Date        Name        Description
*   03/22/00    aliu        Adapted from original C++ ICU Hashtable.
*   07/06/01    aliu        Modified to support int32_t keys on
*                           platforms with sizeof(void*) < 32.
******************************************************************************
*/

#include "uhash.h"
#include "unicode/ustring.h"
#include "cstring.h"
#include "cmemory.h"
#include "uassert.h"
#include "ustr_imp.h"

/* This hashtable is implemented as a double hash.  All elements are
 * stored in a single array with no secondary storage for collision
 * resolution (no linked list, etc.).  When there is a hash collision
 * (when two unequal keys have the same hashcode) we resolve this by
 * using a secondary hash.  The secondary hash is an increment
 * computed as a hash function (a different one) of the primary
 * hashcode.  This increment is added to the initial hash value to
 * obtain further slots assigned to the same hash code.  For this to
 * work, the length of the array and the increment must be relatively
 * prime.  The easiest way to achieve this is to have the length of
 * the array be prime, and the increment be any value from
 * 1..length-1.
 *
 * Hashcodes are 32-bit integers.  We make sure all hashcodes are
 * non-negative by masking off the top bit.  This has two effects: (1)
 * modulo arithmetic is simplified.  If we allowed negative hashcodes,
 * then when we computed hashcode % length, we could get a negative
 * result, which we would then have to adjust back into range.  It's
 * simpler to just make hashcodes non-negative. (2) It makes it easy
 * to check for empty vs. occupied slots in the table.  We just mark
 * empty or deleted slots with a negative hashcode.
 *
 * The central function is _uhash_find().  This function looks for a
 * slot matching the given key and hashcode.  If one is found, it
 * returns a pointer to that slot.  If the table is full, and no match
 * is found, it returns nullptr -- in theory.  This would make the code
 * more complicated, since all callers of _uhash_find() would then
 * have to check for a nullptr result.  To keep this from happening, we
 * don't allow the table to fill.  When there is only one
 * empty/deleted slot left, uhash_put() will refuse to increase the
 * count, and fail.  This simplifies the code.  In practice, one will
 * seldom encounter this using default UHashtables.  However, if a
 * hashtable is set to a U_FIXED resize policy, or if memory is
 * exhausted, then the table may fill.
 *
 * High and low water ratios control rehashing.  They establish levels
 * of fullness (from 0 to 1) outside of which the data array is
 * reallocated and repopulated.  Setting the low water ratio to zero
 * means the table will never shrink.  Setting the high water ratio to
 * one means the table will never grow.  The ratios should be
 * coordinated with the ratio between successive elements of the
 * PRIMES table, so that when the primeIndex is incremented or
 * decremented during rehashing, it brings the ratio of count / length
 * back into the desired range (between low and high water ratios).
 */

/********************************************************************
 * PRIVATE Constants, Macros
 ********************************************************************/

/* This is a list of non-consecutive primes chosen such that
 * PRIMES[i+1] ~ 2*PRIMES[i].  (Currently, the ratio ranges from 1.81
 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.)  If this
 * ratio is changed, the low and high water ratios should also be
 * adjusted to suit.
 *
 * These prime numbers were also chosen so that they are the largest
 * prime number while being less than a power of two.
 */
static const int32_t PRIMES[] =;

#define PRIMES_LENGTH
#define DEFAULT_PRIME_INDEX

/* These ratios are tuned to the PRIMES array such that a resize
 * places the table back into the zone of non-resizing.  That is,
 * after a call to _uhash_rehash(), a subsequent call to
 * _uhash_rehash() should do nothing (should not churn).  This is only
 * a potential problem with U_GROW_AND_SHRINK.
 */
static const float RESIZE_POLICY_RATIO_TABLE[6] =;

/*
  Invariants for hashcode values:

  * DELETED < 0
  * EMPTY < 0
  * Real hashes >= 0

  Hashcodes may not start out this way, but internally they are
  adjusted so that they are always positive.  We assume 32-bit
  hashcodes; adjust these constants for other hashcode sizes.
*/
#define HASH_DELETED
#define HASH_EMPTY

#define IS_EMPTY_OR_DELETED(x)

/* This macro expects a UHashTok.pointer as its keypointer and
   valuepointer parameters */
#define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer)

/*
 * Constants for hinting whether a key or value is an integer
 * or a pointer.  If a hint bit is zero, then the associated
 * token is assumed to be an integer.
 */
#define HINT_BOTH_INTEGERS
#define HINT_KEY_POINTER
#define HINT_VALUE_POINTER
#define HINT_ALLOW_ZERO

/********************************************************************
 * PRIVATE Implementation
 ********************************************************************/

static UHashTok
_uhash_setElement(UHashtable *hash, UHashElement* e,
                  int32_t hashcode,
                  UHashTok key, UHashTok value, int8_t hint) {}

/**
 * Assumes that the given element is not empty or deleted.
 */
static UHashTok
_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {}

static void
_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {}

/**
 * Allocate internal data array of a size determined by the given
 * prime index.  If the index is out of range it is pinned into range.
 * If the allocation fails the status is set to
 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed.  In
 * either case the previous array pointer is overwritten.
 *
 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
 */
static void
_uhash_allocate(UHashtable *hash,
                int32_t primeIndex,
                UErrorCode *status) {}

static UHashtable*
_uhash_init(UHashtable *result,
              UHashFunction *keyHash,
              UKeyComparator *keyComp,
              UValueComparator *valueComp,
              int32_t primeIndex,
              UErrorCode *status)
{}

static UHashtable*
_uhash_create(UHashFunction *keyHash,
              UKeyComparator *keyComp,
              UValueComparator *valueComp,
              int32_t primeIndex,
              UErrorCode *status) {}

/**
 * Look for a key in the table, or if no such key exists, the first
 * empty slot matching the given hashcode.  Keys are compared using
 * the keyComparator function.
 *
 * First find the start position, which is the hashcode modulo
 * the length.  Test it to see if it is:
 *
 * a. identical:  First check the hash values for a quick check,
 *    then compare keys for equality using keyComparator.
 * b. deleted
 * c. empty
 *
 * Stop if it is identical or empty, otherwise continue by adding a
 * "jump" value (moduloing by the length again to keep it within
 * range) and retesting.  For efficiency, there need enough empty
 * values so that the searches stop within a reasonable amount of time.
 * This can be changed by changing the high/low water marks.
 *
 * In theory, this function can return nullptr, if it is full (no empty
 * or deleted slots) and if no matching key is found.  In practice, we
 * prevent this elsewhere (in uhash_put) by making sure the last slot
 * in the table is never filled.
 *
 * The size of the table should be prime for this algorithm to work;
 * otherwise we are not guaranteed that the jump value (the secondary
 * hash) is relatively prime to the table length.
 */
static UHashElement*
_uhash_find(const UHashtable *hash, UHashTok key,
            int32_t hashcode) {}

/**
 * Attempt to grow or shrink the data arrays in order to make the
 * count fit between the high and low water marks.  hash_put() and
 * hash_remove() call this method when the count exceeds the high or
 * low water marks.  This method may do nothing, if memory allocation
 * fails, or if the count is already in range, or if the length is
 * already at the low or high limit.  In any case, upon return the
 * arrays will be valid.
 */
static void
_uhash_rehash(UHashtable *hash, UErrorCode *status) {}

static UHashTok
_uhash_remove(UHashtable *hash,
              UHashTok key) {}

static UHashTok
_uhash_put(UHashtable *hash,
           UHashTok key,
           UHashTok value,
           int8_t hint,
           UErrorCode *status) {}


/********************************************************************
 * PUBLIC API
 ********************************************************************/

U_CAPI UHashtable* U_EXPORT2
uhash_open(UHashFunction *keyHash,
           UKeyComparator *keyComp,
           UValueComparator *valueComp,
           UErrorCode *status) {}

U_CAPI UHashtable* U_EXPORT2
uhash_openSize(UHashFunction *keyHash,
               UKeyComparator *keyComp,
               UValueComparator *valueComp,
               int32_t size,
               UErrorCode *status) {}

U_CAPI UHashtable* U_EXPORT2
uhash_init(UHashtable *fillinResult,
           UHashFunction *keyHash,
           UKeyComparator *keyComp,
           UValueComparator *valueComp,
           UErrorCode *status) {}

U_CAPI UHashtable* U_EXPORT2
uhash_initSize(UHashtable *fillinResult,
               UHashFunction *keyHash,
               UKeyComparator *keyComp,
               UValueComparator *valueComp,
               int32_t size,
               UErrorCode *status) {}

U_CAPI void U_EXPORT2
uhash_close(UHashtable *hash) {}

U_CAPI UHashFunction *U_EXPORT2
uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {}

U_CAPI UKeyComparator *U_EXPORT2
uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {}
U_CAPI UValueComparator *U_EXPORT2
uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){}

U_CAPI UObjectDeleter *U_EXPORT2
uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {}

U_CAPI UObjectDeleter *U_EXPORT2
uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {}

U_CAPI void U_EXPORT2
uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {}

U_CAPI int32_t U_EXPORT2
uhash_count(const UHashtable *hash) {}

U_CAPI void* U_EXPORT2
uhash_get(const UHashtable *hash,
          const void* key) {}

U_CAPI void* U_EXPORT2
uhash_iget(const UHashtable *hash,
           int32_t key) {}

U_CAPI int32_t U_EXPORT2
uhash_geti(const UHashtable *hash,
           const void* key) {}

U_CAPI int32_t U_EXPORT2
uhash_igeti(const UHashtable *hash,
           int32_t key) {}

U_CAPI int32_t U_EXPORT2
uhash_getiAndFound(const UHashtable *hash,
                   const void *key,
                   UBool *found) {}

U_CAPI int32_t U_EXPORT2
uhash_igetiAndFound(const UHashtable *hash,
                    int32_t key,
                    UBool *found) {}

U_CAPI void* U_EXPORT2
uhash_put(UHashtable *hash,
          void* key,
          void* value,
          UErrorCode *status) {}

U_CAPI void* U_EXPORT2
uhash_iput(UHashtable *hash,
           int32_t key,
           void* value,
           UErrorCode *status) {}

U_CAPI int32_t U_EXPORT2
uhash_puti(UHashtable *hash,
           void* key,
           int32_t value,
           UErrorCode *status) {}


U_CAPI int32_t U_EXPORT2
uhash_iputi(UHashtable *hash,
           int32_t key,
           int32_t value,
           UErrorCode *status) {}

U_CAPI int32_t U_EXPORT2
uhash_putiAllowZero(UHashtable *hash,
                    void *key,
                    int32_t value,
                    UErrorCode *status) {}


U_CAPI int32_t U_EXPORT2
uhash_iputiAllowZero(UHashtable *hash,
                     int32_t key,
                     int32_t value,
                     UErrorCode *status) {}

U_CAPI void* U_EXPORT2
uhash_remove(UHashtable *hash,
             const void* key) {}

U_CAPI void* U_EXPORT2
uhash_iremove(UHashtable *hash,
              int32_t key) {}

U_CAPI int32_t U_EXPORT2
uhash_removei(UHashtable *hash,
              const void* key) {}

U_CAPI int32_t U_EXPORT2
uhash_iremovei(UHashtable *hash,
               int32_t key) {}

U_CAPI void U_EXPORT2
uhash_removeAll(UHashtable *hash) {}

U_CAPI UBool U_EXPORT2
uhash_containsKey(const UHashtable *hash, const void *key) {}

/**
 * Returns true if the UHashtable contains an item with this integer key.
 *
 * @param hash The target UHashtable.
 * @param key An integer key stored in a hashtable
 * @return true if the key is found.
 */
U_CAPI UBool U_EXPORT2
uhash_icontainsKey(const UHashtable *hash, int32_t key) {}

U_CAPI const UHashElement* U_EXPORT2
uhash_find(const UHashtable *hash, const void* key) {}

U_CAPI const UHashElement* U_EXPORT2
uhash_nextElement(const UHashtable *hash, int32_t *pos) {}

U_CAPI void* U_EXPORT2
uhash_removeElement(UHashtable *hash, const UHashElement* e) {}

/********************************************************************
 * UHashTok convenience
 ********************************************************************/

/**
 * Return a UHashTok for an integer.
 */
/*U_CAPI UHashTok U_EXPORT2
uhash_toki(int32_t i) {
    UHashTok tok;
    tok.integer = i;
    return tok;
}*/

/**
 * Return a UHashTok for a pointer.
 */
/*U_CAPI UHashTok U_EXPORT2
uhash_tokp(void* p) {
    UHashTok tok;
    tok.pointer = p;
    return tok;
}*/

/********************************************************************
 * PUBLIC Key Hash Functions
 ********************************************************************/

U_CAPI int32_t U_EXPORT2
uhash_hashUChars(const UHashTok key) {}

U_CAPI int32_t U_EXPORT2
uhash_hashChars(const UHashTok key) {}

U_CAPI int32_t U_EXPORT2
uhash_hashIChars(const UHashTok key) {}

U_CAPI UBool U_EXPORT2
uhash_equals(const UHashtable* hash1, const UHashtable* hash2){}

/********************************************************************
 * PUBLIC Comparator Functions
 ********************************************************************/

U_CAPI UBool U_EXPORT2
uhash_compareUChars(const UHashTok key1, const UHashTok key2) {}

U_CAPI UBool U_EXPORT2
uhash_compareChars(const UHashTok key1, const UHashTok key2) {}

U_CAPI UBool U_EXPORT2
uhash_compareIChars(const UHashTok key1, const UHashTok key2) {}

/********************************************************************
 * PUBLIC int32_t Support Functions
 ********************************************************************/

U_CAPI int32_t U_EXPORT2
uhash_hashLong(const UHashTok key) {}

U_CAPI UBool U_EXPORT2
uhash_compareLong(const UHashTok key1, const UHashTok key2) {}