/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved. * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_ENCODER_ML_H_ #define AOM_AV1_ENCODER_ML_H_ #ifdef __cplusplus extern "C" { #endif #include "config/av1_rtcd.h" #define NN_MAX_HIDDEN_LAYERS … #define NN_MAX_NODES_PER_LAYER … struct NN_CONFIG { … }; // Typedef from struct NN_CONFIG to NN_CONFIG is in rtcd_defs #if CONFIG_NN_V2 // Fully-connectedly layer configuration struct FC_LAYER { const int num_inputs; // Number of input nodes, i.e. features. const int num_outputs; // Number of output nodes. float *weights; // Weight parameters. float *bias; // Bias parameters. const ACTIVATION activation; // Activation function. float *output; // The output array. float *dY; // Gradient of outputs float *dW; // Gradient of weights. float *db; // Gradient of bias }; // NN configure structure V2 struct NN_CONFIG_V2 { const int num_hidden_layers; // Number of hidden layers, max = 10. FC_LAYER layer[NN_MAX_HIDDEN_LAYERS + 1]; // The layer array const int num_logits; // Number of output nodes. float *logits; // Raw prediction (same as output of final layer) const LOSS loss; // Loss function }; // Calculate prediction based on the given input features and neural net config. // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden // layer. void av1_nn_predict_v2(const float *features, NN_CONFIG_V2 *nn_config, int reduce_prec, float *output); #endif // CONFIG_NN_V2 // Applies the softmax normalization function to the input // to get a valid probability distribution in the output: // output[i] = exp(input[i]) / sum_{k \in [0,n)}(exp(input[k])) void av1_nn_softmax(const float *input, float *output, int n); // A faster but less accurate version of av1_nn_softmax(input, output, 16) void av1_nn_fast_softmax_16_c(const float *input, float *output); // Applies a precision reduction to output of av1_nn_predict to prevent // mismatches between C and SIMD implementations. void av1_nn_output_prec_reduce(float *const output, int num_output); #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_ENCODER_ML_H_