chromium/third_party/libaom/source/libaom/av1/encoder/encodeframe_utils.c

/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved.
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "av1/common/common_data.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconintra.h"

#include "av1/encoder/encoder.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encoder_utils.h"
#include "av1/encoder/rdopt.h"

void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit,
                         const BLOCK_SIZE bsize, const int mi_row,
                         const int mi_col, int *const rdmult) {}

#if CONFIG_SALIENCY_MAP
void av1_set_saliency_map_vmaf_rdmult(const AV1_COMP *const cpi,
                                      int *errorperbit, const BLOCK_SIZE bsize,
                                      const int mi_row, const int mi_col,
                                      int *const rdmult) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_mi_w = mi_size_wide[bsize];
  const int num_mi_h = mi_size_high[bsize];
  const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;

  *rdmult =
      (int)(*rdmult * cpi->sm_scaling_factor[(mi_row / num_mi_h) * num_cols +
                                             (mi_col / num_mi_w)]);

  *rdmult = AOMMAX(*rdmult, 0);
  av1_set_error_per_bit(errorperbit, *rdmult);
}
#endif

// TODO(angiebird): Move this function to tpl_model.c
#if !CONFIG_REALTIME_ONLY
int av1_get_cb_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
                      const BLOCK_SIZE bsize, const int mi_row,
                      const int mi_col) {
  const AV1_COMMON *const cm = &cpi->common;
  assert(IMPLIES(cpi->ppi->gf_group.size > 0,
                 cpi->gf_frame_index < cpi->ppi->gf_group.size));
  const int tpl_idx = cpi->gf_frame_index;
  int deltaq_rdmult = set_rdmult(cpi, x, -1);
  if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult;
  if (cm->superres_scale_denominator != SCALE_NUMERATOR) return deltaq_rdmult;
  if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult;
  if (x->rb == 0) return deltaq_rdmult;

  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;

  const int mi_wide = mi_size_wide[bsize];
  const int mi_high = mi_size_high[bsize];

  int tpl_stride = tpl_frame->stride;
  double intra_cost_base = 0;
  double mc_dep_cost_base = 0;
  double cbcmp_base = 0;
  const int step = 1 << tpl_data->tpl_stats_block_mis_log2;

  for (int row = mi_row; row < mi_row + mi_high; row += step) {
    for (int col = mi_col; col < mi_col + mi_wide; col += step) {
      if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
        continue;

      TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
          row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];

      double cbcmp = (double)this_stats->srcrf_dist;
      int64_t mc_dep_delta =
          RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
                 this_stats->mc_dep_dist);
      double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
      intra_cost_base += log(dist_scaled) * cbcmp;
      mc_dep_cost_base += log(3 * dist_scaled + mc_dep_delta) * cbcmp;
      cbcmp_base += cbcmp;
    }
  }

  if (cbcmp_base == 0) return deltaq_rdmult;

  double rk = exp((intra_cost_base - mc_dep_cost_base) / cbcmp_base);
  deltaq_rdmult = (int)(deltaq_rdmult * (rk / x->rb));

  return AOMMAX(deltaq_rdmult, 1);
}
#endif  // !CONFIG_REALTIME_ONLY

static inline void update_filter_type_count(FRAME_COUNTS *counts,
                                            const MACROBLOCKD *xd,
                                            const MB_MODE_INFO *mbmi) {}

// This function will copy the best reference mode information from
// MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT.
static inline void copy_mbmi_ext_frame_to_mbmi_ext(
    MB_MODE_INFO_EXT *mbmi_ext,
    const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) {}

void av1_update_state(const AV1_COMP *const cpi, ThreadData *td,
                      const PICK_MODE_CONTEXT *const ctx, int mi_row,
                      int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) {}

void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
                                 PREDICTION_MODE mode, int16_t mode_context) {}

static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
                               FRAME_COUNTS *counts) {}

void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts,
                         MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
                         const MB_MODE_INFO *above_mi,
                         const MB_MODE_INFO *left_mi, const int intraonly) {}

void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
                         int mi_row, int mi_col, BLOCK_SIZE bsize,
                         const int num_planes) {}

void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
                      int mi_row, int mi_col, BLOCK_SIZE bsize,
                      const int num_planes) {}

static void set_partial_sb_partition(const AV1_COMMON *const cm,
                                     MB_MODE_INFO *mi, int bh_in, int bw_in,
                                     int mi_rows_remaining,
                                     int mi_cols_remaining, BLOCK_SIZE bsize,
                                     MB_MODE_INFO **mib) {}

// This function attempts to set all mode info entries in a given superblock
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
                                MB_MODE_INFO **mib, int mi_row, int mi_col,
                                BLOCK_SIZE bsize) {}

int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col,
                                BLOCK_SIZE bsize) {}

#if !CONFIG_REALTIME_ONLY
int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
                         int mi_col, int orig_rdmult) {
  AV1_COMMON *const cm = &cpi->common;
  const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
  assert(IMPLIES(cpi->ppi->gf_group.size > 0,
                 cpi->gf_frame_index < cpi->ppi->gf_group.size));
  const int tpl_idx = cpi->gf_frame_index;
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
  int64_t intra_cost = 0;
  int64_t mc_dep_cost = 0;
  const int mi_wide = mi_size_wide[bsize];
  const int mi_high = mi_size_high[bsize];

  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
  int tpl_stride = tpl_frame->stride;

  if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) {
    return orig_rdmult;
  }
  if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) {
    return orig_rdmult;
  }

#ifndef NDEBUG
  int mi_count = 0;
#endif
  const int mi_col_sr =
      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
  const int mi_col_end_sr =
      coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
  const int step = 1 << block_mis_log2;
  const int row_step = step;
  const int col_step_sr =
      coded_to_superres_mi(step, cm->superres_scale_denominator);
  for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
    for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
      if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
      TplDepStats *this_stats =
          &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
      int64_t mc_dep_delta =
          RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
                 this_stats->mc_dep_dist);
      intra_cost += this_stats->recrf_dist << RDDIV_BITS;
      mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
#ifndef NDEBUG
      mi_count++;
#endif
    }
  }
  assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);

  double beta = 1.0;
  if (mc_dep_cost > 0 && intra_cost > 0) {
    const double r0 = cpi->rd.r0;
    const double rk = (double)intra_cost / mc_dep_cost;
    beta = (r0 / rk);
  }

  int rdmult = av1_get_adaptive_rdmult(cpi, beta);

  rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2);
  rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2);

  rdmult = AOMMAX(1, rdmult);

  return rdmult;
}

// Checks to see if a super block is on a horizontal image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
  int top_edge = 0;
  int bottom_edge = cpi->common.mi_params.mi_rows;
  int is_active_h_edge = 0;

  // For two pass account for any formatting bars detected.
  if (is_stat_consumption_stage_twopass(cpi)) {
    const AV1_COMMON *const cm = &cpi->common;
    const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
        &cpi->ppi->twopass, cm->current_frame.display_order_hint);
    if (this_frame_stats == NULL) return AOM_CODEC_ERROR;

    // The inactive region is specified in MBs not mi units.
    // The image edge is in the following MB row.
    top_edge += (int)(this_frame_stats->inactive_zone_rows * 4);

    bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4);
    bottom_edge = AOMMAX(top_edge, bottom_edge);
  }

  if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
      ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
    is_active_h_edge = 1;
  }
  return is_active_h_edge;
}

// Checks to see if a super block is on a vertical image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
  int left_edge = 0;
  int right_edge = cpi->common.mi_params.mi_cols;
  int is_active_v_edge = 0;

  // For two pass account for any formatting bars detected.
  if (is_stat_consumption_stage_twopass(cpi)) {
    const AV1_COMMON *const cm = &cpi->common;
    const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
        &cpi->ppi->twopass, cm->current_frame.display_order_hint);
    if (this_frame_stats == NULL) return AOM_CODEC_ERROR;

    // The inactive region is specified in MBs not mi units.
    // The image edge is in the following MB row.
    left_edge += (int)(this_frame_stats->inactive_zone_cols * 4);

    right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4);
    right_edge = AOMMAX(left_edge, right_edge);
  }

  if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
      ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
    is_active_v_edge = 1;
  }
  return is_active_v_edge;
}

void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
                          int mi_col, SuperBlockEnc *sb_enc) {
  sb_enc->tpl_data_count = 0;

  if (!cpi->oxcf.algo_cfg.enable_tpl_model) return;
  if (cpi->common.current_frame.frame_type == KEY_FRAME) return;
  const FRAME_UPDATE_TYPE update_type =
      get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
  if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE)
    return;
  assert(IMPLIES(cpi->ppi->gf_group.size > 0,
                 cpi->gf_frame_index < cpi->ppi->gf_group.size));

  AV1_COMMON *const cm = &cpi->common;
  const int gf_group_index = cpi->gf_frame_index;
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  if (!av1_tpl_stats_ready(tpl_data, gf_group_index)) return;
  const int mi_wide = mi_size_wide[bsize];
  const int mi_high = mi_size_high[bsize];

  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index];
  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
  int tpl_stride = tpl_frame->stride;

  int mi_count = 0;
  int count = 0;
  const int mi_col_sr =
      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
  const int mi_col_end_sr =
      coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
  // mi_cols_sr is mi_cols at superres case.
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);

  // TPL store unit size is not the same as the motion estimation unit size.
  // Here always use motion estimation size to avoid getting repetitive inter/
  // intra cost.
  const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
  assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]);
  const int row_step = mi_size_high[tpl_bsize];
  const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize],
                                               cm->superres_scale_denominator);

  // Stride is only based on SB size, and we fill in values for every 16x16
  // block in a SB.
  sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr;

  for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
    for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
      assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
      // Handle partial SB, so that no invalid values are used later.
      if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) {
        sb_enc->tpl_inter_cost[count] = INT64_MAX;
        sb_enc->tpl_intra_cost[count] = INT64_MAX;
        for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
          sb_enc->tpl_mv[count][i].as_int = INVALID_MV;
        }
        count++;
        continue;
      }

      TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
          row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
      sb_enc->tpl_inter_cost[count] = this_stats->inter_cost
                                      << TPL_DEP_COST_SCALE_LOG2;
      sb_enc->tpl_intra_cost[count] = this_stats->intra_cost
                                      << TPL_DEP_COST_SCALE_LOG2;
      memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv));
      mi_count++;
      count++;
    }
  }

  assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
  sb_enc->tpl_data_count = mi_count;
}

// analysis_type 0: Use mc_dep_cost and intra_cost
// analysis_type 1: Use count of best inter predictor chosen
// analysis_type 2: Use cost reduction from intra to inter for best inter
//                  predictor chosen
int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, ThreadData *td,
                                   int64_t *delta_dist, BLOCK_SIZE bsize,
                                   int mi_row, int mi_col) {
  AV1_COMMON *const cm = &cpi->common;
  assert(IMPLIES(cpi->ppi->gf_group.size > 0,
                 cpi->gf_frame_index < cpi->ppi->gf_group.size));
  const int tpl_idx = cpi->gf_frame_index;
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
  double intra_cost = 0;
  double mc_dep_reg = 0;
  double mc_dep_cost = 0;
  double cbcmp_base = 1;
  double srcrf_dist = 0;
  double srcrf_sse = 0;
  double srcrf_rate = 0;
  const int mi_wide = mi_size_wide[bsize];
  const int mi_high = mi_size_high[bsize];
  const int base_qindex = cm->quant_params.base_qindex;

  if (tpl_idx >= MAX_TPL_FRAME_IDX) return base_qindex;

  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
  int tpl_stride = tpl_frame->stride;
  if (!tpl_frame->is_valid) return base_qindex;

#ifndef NDEBUG
  int mi_count = 0;
#endif
  const int mi_col_sr =
      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
  const int mi_col_end_sr =
      coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
  const int step = 1 << block_mis_log2;
  const int row_step = step;
  const int col_step_sr =
      coded_to_superres_mi(step, cm->superres_scale_denominator);
  for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
    for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
      if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
      TplDepStats *this_stats =
          &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
      double cbcmp = (double)this_stats->srcrf_dist;
      int64_t mc_dep_delta =
          RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
                 this_stats->mc_dep_dist);
      double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
      intra_cost += log(dist_scaled) * cbcmp;
      mc_dep_cost += log(dist_scaled + mc_dep_delta) * cbcmp;
      mc_dep_reg += log(3 * dist_scaled + mc_dep_delta) * cbcmp;
      srcrf_dist += (double)(this_stats->srcrf_dist << RDDIV_BITS);
      srcrf_sse += (double)(this_stats->srcrf_sse << RDDIV_BITS);
      srcrf_rate += (double)(this_stats->srcrf_rate << TPL_DEP_COST_SCALE_LOG2);
#ifndef NDEBUG
      mi_count++;
#endif
      cbcmp_base += cbcmp;
    }
  }
  assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);

  int offset = 0;
  double beta = 1.0;
  double rk;
  if (mc_dep_cost > 0 && intra_cost > 0) {
    const double r0 = cpi->rd.r0;
    rk = exp((intra_cost - mc_dep_cost) / cbcmp_base);
    td->mb.rb = exp((intra_cost - mc_dep_reg) / cbcmp_base);
    beta = (r0 / rk);
    assert(beta > 0.0);
  } else {
    return base_qindex;
  }
  offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);

  const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
  offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
  offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
  int qindex = cm->quant_params.base_qindex + offset;
  qindex = AOMMIN(qindex, MAXQ);
  qindex = AOMMAX(qindex, MINQ);

  int frm_qstep = av1_dc_quant_QTX(base_qindex, 0, cm->seq_params->bit_depth);
  int sbs_qstep =
      av1_dc_quant_QTX(base_qindex, offset, cm->seq_params->bit_depth);

  if (delta_dist) {
    double sbs_dist = srcrf_dist * pow((double)sbs_qstep / frm_qstep, 2.0);
    double sbs_rate = srcrf_rate * ((double)frm_qstep / sbs_qstep);
    sbs_dist = AOMMIN(sbs_dist, srcrf_sse);
    *delta_dist = (int64_t)((sbs_dist - srcrf_dist) / rk);
    *delta_dist += RDCOST(tpl_frame->base_rdmult, 4 * 256, 0);
    *delta_dist += RDCOST(tpl_frame->base_rdmult, sbs_rate - srcrf_rate, 0);
  }
  return qindex;
}

#if !DISABLE_HDR_LUMA_DELTAQ
// offset table defined in Table3 of T-REC-H.Sup15 document.
static const int hdr_thres[HDR_QP_LEVELS + 1] = { 0,   301, 367, 434, 501, 567,
                                                  634, 701, 767, 834, 1024 };

static const int hdr10_qp_offset[HDR_QP_LEVELS] = { 3,  2,  1,  0,  -1,
                                                    -2, -3, -4, -5, -6 };
#endif

int av1_get_q_for_hdr(AV1_COMP *const cpi, MACROBLOCK *const x,
                      BLOCK_SIZE bsize, int mi_row, int mi_col) {
  AV1_COMMON *const cm = &cpi->common;
  assert(cm->seq_params->bit_depth == AOM_BITS_10);

#if DISABLE_HDR_LUMA_DELTAQ
  (void)x;
  (void)bsize;
  (void)mi_row;
  (void)mi_col;
  return cm->quant_params.base_qindex;
#else
  // calculate pixel average
  const int block_luma_avg = av1_log_block_avg(cpi, x, bsize, mi_row, mi_col);
  // adjust offset based on average of the pixel block
  int offset = 0;
  for (int i = 0; i < HDR_QP_LEVELS; i++) {
    if (block_luma_avg >= hdr_thres[i] && block_luma_avg < hdr_thres[i + 1]) {
      offset = (int)(hdr10_qp_offset[i] * QP_SCALE_FACTOR);
      break;
    }
  }

  const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
  offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
  offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
  int qindex = cm->quant_params.base_qindex + offset;
  qindex = AOMMIN(qindex, MAXQ);
  qindex = AOMMAX(qindex, MINQ);

  return qindex;
#endif
}
#endif  // !CONFIG_REALTIME_ONLY

void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree,
                                            BLOCK_SIZE bsize) {}

// Record the ref frames that have been selected by square partition blocks.
void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type,
                                       BLOCK_SIZE bsize, int mib_size,
                                       int mi_row, int mi_col) {}

static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr,
                           int num_cdfs, int cdf_stride, int nsymbs,
                           int wt_left, int wt_tr) {}

#define AVERAGE_CDF(cname_left, cname_tr, nsymbs)

#define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride)

static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left,
                    int wt_tr) {}

// In case of row-based multi-threading of encoder, since we always
// keep a top - right sync, we can average the top - right SB's CDFs and
// the left SB's CDFs and use the same for current SB's encoding to
// improve the performance. This function facilitates the averaging
// of CDF and used only when row-mt is enabled in encoder.
void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr,
                         int wt_left, int wt_tr) {}

// Check neighbor blocks' motion information.
static int check_neighbor_blocks(MB_MODE_INFO **mi, int mi_stride,
                                 const TileInfo *const tile_info, int mi_row,
                                 int mi_col) {}

// Check this block's motion in a fast way.
static int fast_detect_non_zero_motion(AV1_COMP *cpi, const uint8_t *src_y,
                                       int src_ystride,
                                       const uint8_t *last_src_y,
                                       int last_src_ystride, int mi_row,
                                       int mi_col) {}

// Grade the temporal variation of the source by comparing the current sb and
// its collocated block in the last frame.
void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data,
                           int mi_row, int mi_col) {}

// Memset the mbmis at the current superblock to 0
void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size,
                    int mi_row, int mi_col) {}

void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi,
                         ThreadData *td, const TileDataEnc *tile_data,
                         int mi_row, int mi_col) {}

void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi,
                          ThreadData *td, TileDataEnc *tile_data, int mi_row,
                          int mi_col) {}

/*! Checks whether to skip updating the entropy cost based on tile info.
 *
 * This function contains the common code used to skip the cost update of coeff,
 * mode, mv and dv symbols.
 */
static int skip_cost_update(const SequenceHeader *seq_params,
                            const TileInfo *const tile_info, const int mi_row,
                            const int mi_col,
                            INTERNAL_COST_UPDATE_TYPE upd_level) {}

// Checks for skip status of mv cost update.
static int skip_mv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
                               const int mi_row, const int mi_col) {}

// Checks for skip status of dv cost update.
static int skip_dv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
                               const int mi_row, const int mi_col) {}

// Update the rate costs of some symbols according to the frequency directed
// by speed features
void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td,
                           const TileInfo *const tile_info, const int mi_row,
                           const int mi_col) {}

void av1_dealloc_src_diff_buf(struct macroblock *mb, int num_planes) {}

void av1_alloc_src_diff_buf(const struct AV1Common *cm, struct macroblock *mb) {}