chromium/third_party/libaom/source/libaom/av1/encoder/partition_search.c

/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved.
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <float.h>

#include "aom_dsp/txfm_common.h"

#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
#include "av1/common/reconintra.h"

#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/intra_mode_search_utils.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/nonrd_opt.h"
#include "av1/encoder/partition_search.h"
#include "av1/encoder/partition_strategy.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/var_based_part.h"
#include "av1/encoder/av1_ml_partition_models.h"

#if CONFIG_TUNE_VMAF
#include "av1/encoder/tune_vmaf.h"
#endif

#define COLLECT_MOTION_SEARCH_FEATURE_SB

void av1_reset_part_sf(PARTITION_SPEED_FEATURES *part_sf) {}

// Reset speed features that works for the baseline encoding, but
// blocks the external partition search.
void av1_reset_sf_for_ext_part(AV1_COMP *const cpi) {}

#if !CONFIG_REALTIME_ONLY
// If input |features| is NULL, write tpl stats to file for each super block.
// Otherwise, store tpl stats to |features|.
// The tpl stats is computed in the unit of tpl_bsize_1d (16x16).
// When writing to text file:
// The first row contains super block position, super block size,
// tpl unit length, number of units in the super block.
// The second row contains the intra prediction cost for each unit.
// The third row contains the inter prediction cost for each unit.
// The forth row contains the motion compensated dependency cost for each unit.
static void collect_tpl_stats_sb(const AV1_COMP *const cpi,
                                 const BLOCK_SIZE bsize, const int mi_row,
                                 const int mi_col,
                                 aom_partition_features_t *features) {
  const AV1_COMMON *const cm = &cpi->common;
  GF_GROUP *gf_group = &cpi->ppi->gf_group;
  if (gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE ||
      gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) {
    return;
  }

  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cpi->gf_frame_index];
  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
  // If tpl stats is not established, early return
  if (!tpl_data->ready || gf_group->max_layer_depth_allowed == 0) {
    if (features != NULL) features->sb_features.tpl_features.available = 0;
    return;
  }

  const int tpl_stride = tpl_frame->stride;
  const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
  const int mi_width =
      AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
  const int mi_height =
      AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
  const int col_steps = (mi_width / step) + ((mi_width % step) > 0);
  const int row_steps = (mi_height / step) + ((mi_height % step) > 0);
  const int num_blocks = col_steps * row_steps;

  if (features == NULL) {
    char filename[256];
    snprintf(filename, sizeof(filename), "%s/tpl_feature_sb%d",
             cpi->oxcf.partition_info_path, cpi->sb_counter);
    FILE *pfile = fopen(filename, "w");
    fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize,
            tpl_data->tpl_bsize_1d, num_blocks);
    int count = 0;
    for (int row = 0; row < mi_height; row += step) {
      for (int col = 0; col < mi_width; col += step) {
        TplDepStats *this_stats =
            &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
                                       tpl_data->tpl_stats_block_mis_log2)];
        fprintf(pfile, "%.0f", (double)this_stats->intra_cost);
        if (count < num_blocks - 1) fprintf(pfile, ",");
        ++count;
      }
    }
    fprintf(pfile, "\n");
    count = 0;
    for (int row = 0; row < mi_height; row += step) {
      for (int col = 0; col < mi_width; col += step) {
        TplDepStats *this_stats =
            &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
                                       tpl_data->tpl_stats_block_mis_log2)];
        fprintf(pfile, "%.0f", (double)this_stats->inter_cost);
        if (count < num_blocks - 1) fprintf(pfile, ",");
        ++count;
      }
    }
    fprintf(pfile, "\n");
    count = 0;
    for (int row = 0; row < mi_height; row += step) {
      for (int col = 0; col < mi_width; col += step) {
        TplDepStats *this_stats =
            &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
                                       tpl_data->tpl_stats_block_mis_log2)];
        const int64_t mc_dep_delta =
            RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
                   this_stats->mc_dep_dist);
        fprintf(pfile, "%.0f", (double)mc_dep_delta);
        if (count < num_blocks - 1) fprintf(pfile, ",");
        ++count;
      }
    }
    fclose(pfile);
  } else {
    features->sb_features.tpl_features.available = 1;
    features->sb_features.tpl_features.tpl_unit_length = tpl_data->tpl_bsize_1d;
    features->sb_features.tpl_features.num_units = num_blocks;
    int count = 0;
    for (int row = 0; row < mi_height; row += step) {
      for (int col = 0; col < mi_width; col += step) {
        TplDepStats *this_stats =
            &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
                                       tpl_data->tpl_stats_block_mis_log2)];
        const int64_t mc_dep_delta =
            RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
                   this_stats->mc_dep_dist);
        features->sb_features.tpl_features.intra_cost[count] =
            this_stats->intra_cost;
        features->sb_features.tpl_features.inter_cost[count] =
            this_stats->inter_cost;
        features->sb_features.tpl_features.mc_dep_cost[count] = mc_dep_delta;
        ++count;
      }
    }
  }
}
#endif  // !CONFIG_REALTIME_ONLY

static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd,
                              FRAME_COUNTS *counts, TX_SIZE tx_size, int depth,
                              int blk_row, int blk_col,
                              uint8_t allow_update_cdf) {}

static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x,
                                      BLOCK_SIZE plane_bsize,
                                      FRAME_COUNTS *td_counts,
                                      uint8_t allow_update_cdf) {}

static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row,
                             int blk_col) {}

static void tx_partition_set_contexts(const AV1_COMMON *const cm,
                                      MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) {}

static void update_zeromv_cnt(const AV1_COMP *const cpi,
                              const MB_MODE_INFO *const mi, int mi_row,
                              int mi_col, BLOCK_SIZE bsize) {}

static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data,
                              ThreadData *td, TokenExtra **t, RUN_TYPE dry_run,
                              BLOCK_SIZE bsize, int *rate) {}

static void setup_block_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
                               int mi_row, int mi_col, BLOCK_SIZE bsize,
                               AQ_MODE aq_mode, MB_MODE_INFO *mbmi) {}

void av1_set_offsets_without_segment_id(const AV1_COMP *const cpi,
                                        const TileInfo *const tile,
                                        MACROBLOCK *const x, int mi_row,
                                        int mi_col, BLOCK_SIZE bsize) {}

void av1_set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile,
                     MACROBLOCK *const x, int mi_row, int mi_col,
                     BLOCK_SIZE bsize) {}

/*!\brief Hybrid intra mode search.
 *
 * \ingroup intra_mode_search
 * \callgraph
 * \callergraph
 * This is top level function for mode search for intra frames in non-RD
 * optimized case. Depending on speed feature and block size it calls
 * either non-RD or RD optimized intra mode search.
 *
 * \param[in]    cpi            Top-level encoder structure
 * \param[in]    x              Pointer to structure holding all the data for
                                the current macroblock
 * \param[in]    rd_cost        Struct to keep track of the RD information
 * \param[in]    bsize          Current block size
 * \param[in]    ctx            Structure to hold snapshot of coding context
                                during the mode picking process
 *
 * \remark Nothing is returned. Instead, the MB_MODE_INFO struct inside x
 * is modified to store information about the best mode computed
 * in this function. The rd_cost struct is also updated with the RD stats
 * corresponding to the best mode found.
 */

static inline void hybrid_intra_mode_search(AV1_COMP *cpi, MACROBLOCK *const x,
                                            RD_STATS *rd_cost, BLOCK_SIZE bsize,
                                            PICK_MODE_CONTEXT *ctx) {}

// For real time/allintra row-mt enabled multi-threaded encoding with cost
// update frequency set to COST_UPD_TILE/COST_UPD_OFF, tile ctxt is not updated
// at superblock level. Thus, it is not required for the encoding of top-right
// superblock be complete for updating tile ctxt. However, when encoding a block
// whose right edge is also the superblock edge, intra and inter mode evaluation
// (ref mv list population) require the encoding of the top-right superblock to
// be complete. So, here, we delay the waiting of threads until the need for the
// data from the top-right superblock region.
static inline void wait_for_top_right_sb(AV1EncRowMultiThreadInfo *enc_row_mt,
                                         AV1EncRowMultiThreadSync *row_mt_sync,
                                         TileInfo *tile_info,
                                         BLOCK_SIZE sb_size,
                                         int sb_mi_size_log2, BLOCK_SIZE bsize,
                                         int mi_row, int mi_col) {}

/*!\brief Interface for AV1 mode search for an individual coding block
 *
 * \ingroup partition_search
 * \callgraph
 * \callergraph
 * Searches prediction modes, transform, and coefficient coding modes for an
 * individual coding block. This function is the top-level interface that
 * directs the encoder to the proper mode search function, among these
 * implemented for inter/intra + rd/non-rd + non-skip segment/skip segment.
 *
 * \param[in]    cpi            Top-level encoder structure
 * \param[in]    tile_data      Pointer to struct holding adaptive
 *                              data/contexts/models for the tile during
 *                              encoding
 * \param[in]    x              Pointer to structure holding all the data for
 *                              the current macroblock
 * \param[in]    mi_row         Row coordinate of the block in a step size of
 *                              MI_SIZE
 * \param[in]    mi_col         Column coordinate of the block in a step size of
 *                              MI_SIZE
 * \param[in]    rd_cost        Pointer to structure holding rate and distortion
 *                              stats for the current block
 * \param[in]    partition      Partition mode of the parent block
 * \param[in]    bsize          Current block size
 * \param[in]    ctx            Pointer to structure holding coding contexts and
 *                              chosen modes for the current block
 * \param[in]    best_rd        Upper bound of rd cost of a valid partition
 *
 * \remark Nothing is returned. Instead, the chosen modes and contexts necessary
 * for reconstruction are stored in ctx, the rate-distortion stats are stored in
 * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be
 * signalled by an INT64_MAX rd_cost->rdcost.
 */
static void pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data,
                          MACROBLOCK *const x, int mi_row, int mi_col,
                          RD_STATS *rd_cost, PARTITION_TYPE partition,
                          BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
                          RD_STATS best_rd) {}

static void update_stats(const AV1_COMMON *const cm, ThreadData *td) {}

/*!\brief Reconstructs an individual coding block
 *
 * \ingroup partition_search
 * Reconstructs an individual coding block by applying the chosen modes stored
 * in ctx, also updates mode counts and entropy models.
 *
 * \param[in]    cpi       Top-level encoder structure
 * \param[in]    tile_data Pointer to struct holding adaptive
 *                         data/contexts/models for the tile during encoding
 * \param[in]    td        Pointer to thread data
 * \param[in]    tp        Pointer to the starting token
 * \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE
 * \param[in]    mi_col    Column coordinate of the block in a step size of
 *                         MI_SIZE
 * \param[in]    dry_run   A code indicating whether it is part of the final
 *                         pass for reconstructing the superblock
 * \param[in]    bsize     Current block size
 * \param[in]    partition Partition mode of the parent block
 * \param[in]    ctx       Pointer to structure holding coding contexts and the
 *                         chosen modes for the current block
 * \param[in]    rate      Pointer to the total rate for the current block
 *
 * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters)
 * will be updated in the pixel buffers in td->mb.e_mbd. Also, the chosen modes
 * will be stored in the MB_MODE_INFO buffer td->mb.e_mbd.mi[0].
 */
static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data,
                     ThreadData *td, TokenExtra **tp, int mi_row, int mi_col,
                     RUN_TYPE dry_run, BLOCK_SIZE bsize,
                     PARTITION_TYPE partition, PICK_MODE_CONTEXT *const ctx,
                     int *rate) {}

/*!\brief Reconstructs a partition (may contain multiple coding blocks)
 *
 * \ingroup partition_search
 * Reconstructs a sub-partition of the superblock by applying the chosen modes
 * and partition trees stored in pc_tree.
 *
 * \param[in]    cpi       Top-level encoder structure
 * \param[in]    td        Pointer to thread data
 * \param[in]    tile_data Pointer to struct holding adaptive
 *                         data/contexts/models for the tile during encoding
 * \param[in]    tp        Pointer to the starting token
 * \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE
 * \param[in]    mi_col    Column coordinate of the block in a step size of
 *                         MI_SIZE
 * \param[in]    dry_run   A code indicating whether it is part of the final
 *                         pass for reconstructing the superblock
 * \param[in]    bsize     Current block size
 * \param[in]    pc_tree   Pointer to the PC_TREE node storing the picked
 *                         partitions and mode info for the current block
 * \param[in]    rate      Pointer to the total rate for the current block
 *
 * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters)
 * will be updated in the pixel buffers in td->mb.e_mbd.
 */
static void encode_sb(const AV1_COMP *const cpi, ThreadData *td,
                      TileDataEnc *tile_data, TokenExtra **tp, int mi_row,
                      int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
                      PC_TREE *pc_tree, int *rate) {}

static inline int is_adjust_var_based_part_enabled(
    AV1_COMMON *const cm, const PARTITION_SPEED_FEATURES *const part_sf,
    BLOCK_SIZE bsize) {}

/*!\brief AV1 block partition search (partition estimation and partial search).
*
* \ingroup partition_search
* Encode the block by applying pre-calculated partition patterns that are
* represented by coding block sizes stored in the mbmi array. Minor partition
* adjustments are tested and applied if they lead to lower rd costs. The
* partition types are limited to a basic set: none, horz, vert, and split.
*
* \param[in]    cpi       Top-level encoder structure
* \param[in]    td        Pointer to thread data
* \param[in]    tile_data Pointer to struct holding adaptive
data/contexts/models for the tile during encoding
* \param[in]    mib       Array representing MB_MODE_INFO pointers for mi
blocks starting from the first pixel of the current
block
* \param[in]    tp        Pointer to the starting token
* \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE
* \param[in]    mi_col    Column coordinate of the block in a step size of
MI_SIZE
* \param[in]    bsize     Current block size
* \param[in]    rate      Pointer to the final rate for encoding the current
block
* \param[in]    dist      Pointer to the final distortion of the current block
* \param[in]    do_recon  Whether the reconstruction function needs to be run,
either for finalizing a superblock or providing
reference for future sub-partitions
* \param[in]    pc_tree   Pointer to the PC_TREE node holding the picked
partitions and mode info for the current block
*
* \remark Nothing is returned. The pc_tree struct is modified to store the
* picked partition and modes. The rate and dist are also updated with those
* corresponding to the best partition found.
*/
void av1_rd_use_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data,
                          MB_MODE_INFO **mib, TokenExtra **tp, int mi_row,
                          int mi_col, BLOCK_SIZE bsize, int *rate,
                          int64_t *dist, int do_recon, PC_TREE *pc_tree) {}

static void encode_b_nonrd(const AV1_COMP *const cpi, TileDataEnc *tile_data,
                           ThreadData *td, TokenExtra **tp, int mi_row,
                           int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
                           PARTITION_TYPE partition,
                           PICK_MODE_CONTEXT *const ctx, int *rate) {}

static int get_force_zeromv_skip_flag_for_blk(const AV1_COMP *cpi,
                                              const MACROBLOCK *x,
                                              BLOCK_SIZE bsize) {}

/*!\brief Top level function to pick block mode for non-RD optimized case
 *
 * \ingroup partition_search
 * \callgraph
 * \callergraph
 * Searches prediction modes, transform, and coefficient coding modes for an
 * individual coding block. This function is the top-level function that is
 * used for non-RD optimized mode search (controlled by
 * \c cpi->sf.rt_sf.use_nonrd_pick_mode). Depending on frame type it calls
 * inter/skip/hybrid-intra mode search functions
 *
 * \param[in]    cpi            Top-level encoder structure
 * \param[in]    tile_data      Pointer to struct holding adaptive
 *                              data/contexts/models for the tile during
 *                              encoding
 * \param[in]    x              Pointer to structure holding all the data for
 *                              the current macroblock
 * \param[in]    mi_row         Row coordinate of the block in a step size of
 *                              MI_SIZE
 * \param[in]    mi_col         Column coordinate of the block in a step size of
 *                              MI_SIZE
 * \param[in]    rd_cost        Pointer to structure holding rate and distortion
 *                              stats for the current block
 * \param[in]    bsize          Current block size
 * \param[in]    ctx            Pointer to structure holding coding contexts and
 *                              chosen modes for the current block
 *
 * \remark Nothing is returned. Instead, the chosen modes and contexts necessary
 * for reconstruction are stored in ctx, the rate-distortion stats are stored in
 * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be
 * signalled by an INT64_MAX rd_cost->rdcost.
 */
static void pick_sb_modes_nonrd(AV1_COMP *const cpi, TileDataEnc *tile_data,
                                MACROBLOCK *const x, int mi_row, int mi_col,
                                RD_STATS *rd_cost, BLOCK_SIZE bsize,
                                PICK_MODE_CONTEXT *ctx) {}

static int try_split_partition(AV1_COMP *const cpi, ThreadData *const td,
                               TileDataEnc *const tile_data,
                               TileInfo *const tile_info, TokenExtra **tp,
                               MACROBLOCK *const x, MACROBLOCKD *const xd,
                               const CommonModeInfoParams *const mi_params,
                               const int mi_row, const int mi_col,
                               const BLOCK_SIZE bsize, const int pl,
                               PC_TREE *pc_tree) {}

// Returns if SPLIT partitions should be evaluated
static bool calc_do_split_flag(const AV1_COMP *cpi, const MACROBLOCK *x,
                               const PC_TREE *pc_tree, const RD_STATS *none_rdc,
                               const CommonModeInfoParams *mi_params,
                               int mi_row, int mi_col, int hbs,
                               BLOCK_SIZE bsize, PARTITION_TYPE partition) {}

static void try_merge(AV1_COMP *const cpi, ThreadData *td,
                      TileDataEnc *tile_data, MB_MODE_INFO **mib,
                      TokenExtra **tp, const int mi_row, const int mi_col,
                      const BLOCK_SIZE bsize, PC_TREE *const pc_tree,
                      const PARTITION_TYPE partition, const BLOCK_SIZE subsize,
                      const int pl) {}

// Evaluate if the sub-partitions can be merged directly into a large partition
// without calculating the RD cost.
static void direct_partition_merging(AV1_COMP *cpi, ThreadData *td,
                                     TileDataEnc *tile_data, MB_MODE_INFO **mib,
                                     int mi_row, int mi_col, BLOCK_SIZE bsize) {}

/*!\brief AV1 block partition application (minimal RD search).
*
* \ingroup partition_search
* \callgraph
* \callergraph
* Encode the block by applying pre-calculated partition patterns that are
* represented by coding block sizes stored in the mbmi array. The only
* partition adjustment allowed is merging leaf split nodes if it leads to a
* lower rd cost. The partition types are limited to a basic set: none, horz,
* vert, and split. This function is only used in the real-time mode.
*
* \param[in]    cpi       Top-level encoder structure
* \param[in]    td        Pointer to thread data
* \param[in]    tile_data Pointer to struct holding adaptive
data/contexts/models for the tile during encoding
* \param[in]    mib       Array representing MB_MODE_INFO pointers for mi
blocks starting from the first pixel of the current
block
* \param[in]    tp        Pointer to the starting token
* \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE
* \param[in]    mi_col    Column coordinate of the block in a step size of
MI_SIZE
* \param[in]    bsize     Current block size
* \param[in]    pc_tree   Pointer to the PC_TREE node holding the picked
partitions and mode info for the current block
*
* \remark Nothing is returned. The pc_tree struct is modified to store the
* picked partition and modes.
*/
void av1_nonrd_use_partition(AV1_COMP *cpi, ThreadData *td,
                             TileDataEnc *tile_data, MB_MODE_INFO **mib,
                             TokenExtra **tp, int mi_row, int mi_col,
                             BLOCK_SIZE bsize, PC_TREE *pc_tree) {}

#if !CONFIG_REALTIME_ONLY
// Try searching for an encoding for the given subblock. Returns zero if the
// rdcost is already too high (to tell the caller not to bother searching for
// encodings of further subblocks).
static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td,
                           TileDataEnc *tile_data, TokenExtra **tp, int is_last,
                           int mi_row, int mi_col, BLOCK_SIZE subsize,
                           RD_STATS best_rdcost, RD_STATS *sum_rdc,
                           PARTITION_TYPE partition,
                           PICK_MODE_CONTEXT *this_ctx) {
  MACROBLOCK *const x = &td->mb;
  const int orig_mult = x->rdmult;
  setup_block_rdmult(cpi, x, mi_row, mi_col, subsize, NO_AQ, NULL);

  av1_rd_cost_update(x->rdmult, &best_rdcost);

  RD_STATS rdcost_remaining;
  av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining);
  RD_STATS this_rdc;
  pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition,
                subsize, this_ctx, rdcost_remaining);

  if (this_rdc.rate == INT_MAX) {
    sum_rdc->rdcost = INT64_MAX;
  } else {
    sum_rdc->rate += this_rdc.rate;
    sum_rdc->dist += this_rdc.dist;
    av1_rd_cost_update(x->rdmult, sum_rdc);
  }

  if (sum_rdc->rdcost >= best_rdcost.rdcost) {
    x->rdmult = orig_mult;
    return 0;
  }

  if (!is_last) {
    av1_update_state(cpi, td, this_ctx, mi_row, mi_col, subsize, 1);
    encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL);
  }

  x->rdmult = orig_mult;
  return 1;
}

// Tests an AB partition, and updates the encoder status, the pick mode
// contexts, the best rdcost, and the best partition.
static bool rd_test_partition3(AV1_COMP *const cpi, ThreadData *td,
                               TileDataEnc *tile_data, TokenExtra **tp,
                               PC_TREE *pc_tree, RD_STATS *best_rdc,
                               int64_t *this_rdcost,
                               PICK_MODE_CONTEXT *ctxs[SUB_PARTITIONS_AB],
                               int mi_row, int mi_col, BLOCK_SIZE bsize,
                               PARTITION_TYPE partition,
                               const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB],
                               const int ab_mi_pos[SUB_PARTITIONS_AB][2],
                               const MB_MODE_INFO **mode_cache) {
  MACROBLOCK *const x = &td->mb;
  const MACROBLOCKD *const xd = &x->e_mbd;
  const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
  RD_STATS sum_rdc;
  av1_init_rd_stats(&sum_rdc);
  sum_rdc.rate = x->mode_costs.partition_cost[pl][partition];
  sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
  // Loop over sub-partitions in AB partition type.
  for (int i = 0; i < SUB_PARTITIONS_AB; i++) {
    if (mode_cache && mode_cache[i]) {
      x->use_mb_mode_cache = 1;
      x->mb_mode_cache = mode_cache[i];
    }
    const int mode_search_success =
        rd_try_subblock(cpi, td, tile_data, tp, i == SUB_PARTITIONS_AB - 1,
                        ab_mi_pos[i][0], ab_mi_pos[i][1], ab_subsize[i],
                        *best_rdc, &sum_rdc, partition, ctxs[i]);
    x->use_mb_mode_cache = 0;
    x->mb_mode_cache = NULL;
    if (!mode_search_success) {
      return false;
    }
  }

  av1_rd_cost_update(x->rdmult, &sum_rdc);
  *this_rdcost = sum_rdc.rdcost;
  if (sum_rdc.rdcost >= best_rdc->rdcost) return false;
  sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
  *this_rdcost = sum_rdc.rdcost;
  if (sum_rdc.rdcost >= best_rdc->rdcost) return false;

  *best_rdc = sum_rdc;
  pc_tree->partitioning = partition;
  return true;
}

#if CONFIG_COLLECT_PARTITION_STATS
static void init_partition_block_timing_stats(
    PartitionTimingStats *part_timing_stats) {
  av1_zero(*part_timing_stats);
}

static inline void start_partition_block_timer(
    PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type) {
  assert(!part_timing_stats->timer_is_on);
  part_timing_stats->partition_attempts[partition_type] += 1;
  aom_usec_timer_start(&part_timing_stats->timer);
  part_timing_stats->timer_is_on = 1;
}

static inline void end_partition_block_timer(
    PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type,
    int64_t rdcost) {
  if (part_timing_stats->timer_is_on) {
    aom_usec_timer_mark(&part_timing_stats->timer);
    const int64_t time = aom_usec_timer_elapsed(&part_timing_stats->timer);
    part_timing_stats->partition_times[partition_type] += time;
    part_timing_stats->partition_rdcost[partition_type] = rdcost;
    part_timing_stats->timer_is_on = 0;
  }
}
static inline void print_partition_timing_stats_with_rdcost(
    const PartitionTimingStats *part_timing_stats, int mi_row, int mi_col,
    BLOCK_SIZE bsize, FRAME_UPDATE_TYPE frame_update_type, int frame_number,
    const RD_STATS *best_rdc, const char *filename) {
  FILE *f = fopen(filename, "a");
  fprintf(f, "%d,%d,%d,%d,%d,%d,%" PRId64 ",%" PRId64 ",", bsize, frame_number,
          frame_update_type, mi_row, mi_col, best_rdc->rate, best_rdc->dist,
          best_rdc->rdcost);
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]);
  }
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]);
  }
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    fprintf(f, "%" PRId64 ",", part_timing_stats->partition_times[idx]);
  }
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    if (part_timing_stats->partition_rdcost[idx] == INT64_MAX) {
      fprintf(f, "%d,", -1);
    } else {
      fprintf(f, "%" PRId64 ",", part_timing_stats->partition_rdcost[idx]);
    }
  }
  fprintf(f, "\n");
  fclose(f);
}

static inline void print_partition_timing_stats(
    const PartitionTimingStats *part_timing_stats, int intra_only,
    int show_frame, const BLOCK_SIZE bsize, const char *filename) {
  FILE *f = fopen(filename, "a");
  fprintf(f, "%d,%d,%d,", bsize, show_frame, intra_only);
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]);
  }
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]);
  }
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    fprintf(f, "%" PRId64 ",", part_timing_stats->partition_times[idx]);
  }
  fprintf(f, "\n");
  fclose(f);
}

static inline void accumulate_partition_timing_stats(
    FramePartitionTimingStats *fr_part_timing_stats,
    const PartitionTimingStats *part_timing_stats, BLOCK_SIZE bsize) {
  const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize);
  int *agg_attempts = fr_part_timing_stats->partition_attempts[bsize_idx];
  int *agg_decisions = fr_part_timing_stats->partition_decisions[bsize_idx];
  int64_t *agg_times = fr_part_timing_stats->partition_times[bsize_idx];
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    agg_attempts[idx] += part_timing_stats->partition_attempts[idx];
    agg_decisions[idx] += part_timing_stats->partition_decisions[idx];
    agg_times[idx] += part_timing_stats->partition_times[idx];
  }
}
#endif  // CONFIG_COLLECT_PARTITION_STATS

// Initialize state variables of partition search used in
// av1_rd_pick_partition().
static void init_partition_search_state_params(
    MACROBLOCK *x, AV1_COMP *const cpi, PartitionSearchState *part_search_state,
    int mi_row, int mi_col, BLOCK_SIZE bsize) {
  MACROBLOCKD *const xd = &x->e_mbd;
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams *blk_params = &part_search_state->part_blk_params;
  const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;

  // Initialization of block size related parameters.
  blk_params->mi_step = mi_size_wide[bsize] / 2;
  blk_params->mi_row = mi_row;
  blk_params->mi_col = mi_col;
  blk_params->mi_row_edge = mi_row + blk_params->mi_step;
  blk_params->mi_col_edge = mi_col + blk_params->mi_step;
  blk_params->width = block_size_wide[bsize];
  blk_params->min_partition_size_1d =
      block_size_wide[x->sb_enc.min_partition_size];
  blk_params->subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
  blk_params->split_bsize2 = blk_params->subsize;
  blk_params->bsize_at_least_8x8 = (bsize >= BLOCK_8X8);
  blk_params->bsize = bsize;

  // Check if the partition corresponds to edge block.
  blk_params->has_rows = (blk_params->mi_row_edge < mi_params->mi_rows);
  blk_params->has_cols = (blk_params->mi_col_edge < mi_params->mi_cols);

  // Update intra partitioning related info.
  part_search_state->intra_part_info = &x->part_search_info;
  // Prepare for segmentation CNN-based partitioning for intra-frame.
  if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) {
    part_search_state->intra_part_info->quad_tree_idx = 0;
    part_search_state->intra_part_info->cnn_output_valid = 0;
  }

  // Set partition plane context index.
  part_search_state->pl_ctx_idx =
      blk_params->bsize_at_least_8x8
          ? partition_plane_context(xd, mi_row, mi_col, bsize)
          : 0;

  // Partition cost buffer update
  ModeCosts *mode_costs = &x->mode_costs;
  part_search_state->partition_cost =
      mode_costs->partition_cost[part_search_state->pl_ctx_idx];

  // Initialize HORZ and VERT win flags as true for all split partitions.
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
    part_search_state->split_part_rect_win[i].rect_part_win[HORZ] = true;
    part_search_state->split_part_rect_win[i].rect_part_win[VERT] = true;
  }

  // Initialize the rd cost.
  av1_init_rd_stats(&part_search_state->this_rdc);

  // Initialize RD costs for partition types to 0.
  part_search_state->none_rd = 0;
  av1_zero(part_search_state->split_rd);
  av1_zero(part_search_state->rect_part_rd);

  // Initialize SPLIT partition to be not ready.
  av1_zero(part_search_state->is_split_ctx_is_ready);
  // Initialize HORZ and VERT partitions to be not ready.
  av1_zero(part_search_state->is_rect_ctx_is_ready);

  // Chroma subsampling.
  part_search_state->ss_x = x->e_mbd.plane[1].subsampling_x;
  part_search_state->ss_y = x->e_mbd.plane[1].subsampling_y;

  // Initialize partition search flags to defaults.
  part_search_state->terminate_partition_search = 0;
  part_search_state->do_square_split = blk_params->bsize_at_least_8x8;
  part_search_state->do_rectangular_split =
      cpi->oxcf.part_cfg.enable_rect_partitions &&
      blk_params->bsize_at_least_8x8;
  av1_zero(part_search_state->prune_rect_part);

  // Initialize allowed partition types for the partition block.
  part_search_state->partition_none_allowed =
      av1_blk_has_rows_and_cols(blk_params);
  part_search_state->partition_rect_allowed[HORZ] =
      part_search_state->do_rectangular_split && blk_params->has_cols &&
      get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ),
                           part_search_state->ss_x,
                           part_search_state->ss_y) != BLOCK_INVALID;
  part_search_state->partition_rect_allowed[VERT] =
      part_search_state->do_rectangular_split && blk_params->has_rows &&
      get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT),
                           part_search_state->ss_x,
                           part_search_state->ss_y) != BLOCK_INVALID;

  // Reset the flag indicating whether a partition leading to a rdcost lower
  // than the bound best_rdc has been found.
  part_search_state->found_best_partition = false;

#if CONFIG_COLLECT_PARTITION_STATS
  init_partition_block_timing_stats(&part_search_state->part_timing_stats);
#endif  // CONFIG_COLLECT_PARTITION_STATS
}

// Override partition cost buffer for the edge blocks.
static void set_partition_cost_for_edge_blk(
    AV1_COMMON const *cm, PartitionSearchState *part_search_state) {
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  assert(blk_params.bsize_at_least_8x8 && part_search_state->pl_ctx_idx >= 0);
  const aom_cdf_prob *partition_cdf =
      cm->fc->partition_cdf[part_search_state->pl_ctx_idx];
  const int max_cost = av1_cost_symbol(0);
  for (PARTITION_TYPE i = 0; i < PARTITION_TYPES; ++i)
    part_search_state->tmp_partition_cost[i] = max_cost;
  if (blk_params.has_cols) {
    // At the bottom, the two possibilities are HORZ and SPLIT.
    aom_cdf_prob bot_cdf[2];
    partition_gather_vert_alike(bot_cdf, partition_cdf, blk_params.bsize);
    static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT };
    av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, bot_cdf,
                             bot_inv_map);
  } else if (blk_params.has_rows) {
    // At the right, the two possibilities are VERT and SPLIT.
    aom_cdf_prob rhs_cdf[2];
    partition_gather_horz_alike(rhs_cdf, partition_cdf, blk_params.bsize);
    static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT };
    av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, rhs_cdf,
                             rhs_inv_map);
  } else {
    // At the bottom right, we always split.
    part_search_state->tmp_partition_cost[PARTITION_SPLIT] = 0;
  }
  // Override the partition cost buffer.
  part_search_state->partition_cost = part_search_state->tmp_partition_cost;
}

// Reset the partition search state flags when
// must_find_valid_partition is equal to 1.
static inline void reset_part_limitations(
    AV1_COMP *const cpi, PartitionSearchState *part_search_state) {
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const int is_rect_part_allowed =
      blk_params.bsize_at_least_8x8 &&
      cpi->oxcf.part_cfg.enable_rect_partitions &&
      (blk_params.width > blk_params.min_partition_size_1d);
  part_search_state->do_square_split =
      blk_params.bsize_at_least_8x8 &&
      (blk_params.width > blk_params.min_partition_size_1d);
  part_search_state->partition_none_allowed =
      av1_blk_has_rows_and_cols(&blk_params) &&
      (blk_params.width >= blk_params.min_partition_size_1d);
  part_search_state->partition_rect_allowed[HORZ] =
      blk_params.has_cols && is_rect_part_allowed &&
      get_plane_block_size(
          get_partition_subsize(blk_params.bsize, PARTITION_HORZ),
          part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID;
  part_search_state->partition_rect_allowed[VERT] =
      blk_params.has_rows && is_rect_part_allowed &&
      get_plane_block_size(
          get_partition_subsize(blk_params.bsize, PARTITION_VERT),
          part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID;
  part_search_state->terminate_partition_search = 0;
}

// Rectangular partitions evaluation at sub-block level.
static void rd_pick_rect_partition(AV1_COMP *const cpi, TileDataEnc *tile_data,
                                   MACROBLOCK *x,
                                   PICK_MODE_CONTEXT *cur_partition_ctx,
                                   PartitionSearchState *part_search_state,
                                   RD_STATS *best_rdc, const int idx,
                                   int mi_row, int mi_col, BLOCK_SIZE bsize,
                                   PARTITION_TYPE partition_type) {
  // Obtain the remainder from the best rd cost
  // for further processing of partition.
  RD_STATS best_remain_rdcost;
  av1_rd_stats_subtraction(x->rdmult, best_rdc, &part_search_state->sum_rdc,
                           &best_remain_rdcost);

  // Obtain the best mode for the partition sub-block.
  pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &part_search_state->this_rdc,
                partition_type, bsize, cur_partition_ctx, best_remain_rdcost);
  av1_rd_cost_update(x->rdmult, &part_search_state->this_rdc);

  // Update the partition rd cost with the current sub-block rd.
  if (part_search_state->this_rdc.rate == INT_MAX) {
    part_search_state->sum_rdc.rdcost = INT64_MAX;
  } else {
    part_search_state->sum_rdc.rate += part_search_state->this_rdc.rate;
    part_search_state->sum_rdc.dist += part_search_state->this_rdc.dist;
    av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc);
  }
  const RECT_PART_TYPE rect_part =
      partition_type == PARTITION_HORZ ? HORZ : VERT;
  part_search_state->rect_part_rd[rect_part][idx] =
      part_search_state->this_rdc.rdcost;
}

typedef int (*active_edge_info)(const AV1_COMP *cpi, int mi_col, int mi_step);

// Checks if HORZ / VERT partition search is allowed.
static inline int is_rect_part_allowed(
    const AV1_COMP *cpi, const PartitionSearchState *part_search_state,
    const active_edge_info *active_edge, RECT_PART_TYPE rect_part,
    const int mi_pos) {
  const PartitionBlkParams *blk_params = &part_search_state->part_blk_params;
  const int is_part_allowed =
      (!part_search_state->terminate_partition_search &&
       part_search_state->partition_rect_allowed[rect_part] &&
       !part_search_state->prune_rect_part[rect_part] &&
       (part_search_state->do_rectangular_split ||
        active_edge[rect_part](cpi, mi_pos, blk_params->mi_step)));
  return is_part_allowed;
}

static void rectangular_partition_search(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree,
    RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    RD_RECT_PART_WIN_INFO *rect_part_win_info, const RECT_PART_TYPE start_type,
    const RECT_PART_TYPE end_type) {
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  RD_STATS *sum_rdc = &part_search_state->sum_rdc;
  const int rect_partition_type[NUM_RECT_PARTS] = { PARTITION_HORZ,
                                                    PARTITION_VERT };

  // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][0]: mi_row postion of
  //                                           HORZ and VERT partition types.
  // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][1]: mi_col postion of
  //                                           HORZ and VERT partition types.
  const int mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][2] = {
    { { blk_params.mi_row, blk_params.mi_col },
      { blk_params.mi_row_edge, blk_params.mi_col } },
    { { blk_params.mi_row, blk_params.mi_col },
      { blk_params.mi_row, blk_params.mi_col_edge } }
  };

  // Initialize active edge_type function pointer
  // for HOZR and VERT partition types.
  active_edge_info active_edge_type[NUM_RECT_PARTS] = { av1_active_h_edge,
                                                        av1_active_v_edge };

  // Indicates edge blocks for HORZ and VERT partition types.
  const int is_not_edge_block[NUM_RECT_PARTS] = { blk_params.has_rows,
                                                  blk_params.has_cols };

  // Initialize pc tree context for HORZ and VERT partition types.
  PICK_MODE_CONTEXT **cur_ctx[NUM_RECT_PARTS][SUB_PARTITIONS_RECT] = {
    { &pc_tree->horizontal[0], &pc_tree->horizontal[1] },
    { &pc_tree->vertical[0], &pc_tree->vertical[1] }
  };

  // Loop over rectangular partition types.
  for (RECT_PART_TYPE i = start_type; i <= end_type; i++) {
    assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
                   !part_search_state->partition_rect_allowed[i]));

    // Check if the HORZ / VERT partition search is to be performed.
    if (!is_rect_part_allowed(cpi, part_search_state, active_edge_type, i,
                              mi_pos_rect[i][0][i]))
      continue;

    // Sub-partition idx.
    int sub_part_idx = 0;
    PARTITION_TYPE partition_type = rect_partition_type[i];
    blk_params.subsize =
        get_partition_subsize(blk_params.bsize, partition_type);
    assert(blk_params.subsize <= BLOCK_LARGEST);
    av1_init_rd_stats(sum_rdc);
    for (int j = 0; j < SUB_PARTITIONS_RECT; j++) {
      if (cur_ctx[i][j][0] == NULL) {
        cur_ctx[i][j][0] =
            av1_alloc_pmc(cpi, blk_params.subsize, &td->shared_coeff_buf);
        if (!cur_ctx[i][j][0])
          aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
                             "Failed to allocate PICK_MODE_CONTEXT");
      }
    }
    sum_rdc->rate = part_search_state->partition_cost[partition_type];
    sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, 0);
#if CONFIG_COLLECT_PARTITION_STATS
    PartitionTimingStats *part_timing_stats =
        &part_search_state->part_timing_stats;
    if (best_rdc->rdcost - sum_rdc->rdcost >= 0) {
      start_partition_block_timer(part_timing_stats, partition_type);
    }
#endif

    // First sub-partition evaluation in HORZ / VERT partition type.
    rd_pick_rect_partition(
        cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state,
        best_rdc, 0, mi_pos_rect[i][sub_part_idx][0],
        mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type);

    // Start of second sub-partition evaluation.
    // Evaluate second sub-partition if the first sub-partition cost
    // is less than the best cost and if it is not an edge block.
    if (sum_rdc->rdcost < best_rdc->rdcost && is_not_edge_block[i]) {
      const MB_MODE_INFO *const mbmi = &cur_ctx[i][sub_part_idx][0]->mic;
      const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
      // Neither palette mode nor cfl predicted.
      if (pmi->palette_size[PLANE_TYPE_Y] == 0 &&
          pmi->palette_size[PLANE_TYPE_UV] == 0) {
        if (mbmi->uv_mode != UV_CFL_PRED)
          part_search_state->is_rect_ctx_is_ready[i] = 1;
      }
      av1_update_state(cpi, td, cur_ctx[i][sub_part_idx][0], blk_params.mi_row,
                       blk_params.mi_col, blk_params.subsize, DRY_RUN_NORMAL);
      encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL,
                        blk_params.subsize, NULL);

      // Second sub-partition evaluation in HORZ / VERT partition type.
      sub_part_idx = 1;
      rd_pick_rect_partition(
          cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state,
          best_rdc, 1, mi_pos_rect[i][sub_part_idx][0],
          mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type);
    }
    // Update HORZ / VERT best partition.
    if (sum_rdc->rdcost < best_rdc->rdcost) {
      sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, sum_rdc->dist);
      if (sum_rdc->rdcost < best_rdc->rdcost) {
        *best_rdc = *sum_rdc;
        part_search_state->found_best_partition = true;
        pc_tree->partitioning = partition_type;
      }
    } else {
      // Update HORZ / VERT win flag.
      if (rect_part_win_info != NULL)
        rect_part_win_info->rect_part_win[i] = false;
    }
#if CONFIG_COLLECT_PARTITION_STATS
    if (part_timing_stats->timer_is_on) {
      end_partition_block_timer(part_timing_stats, partition_type,
                                sum_rdc->rdcost);
    }
#endif
    av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col,
                        blk_params.bsize, av1_num_planes(cm));
  }
}

// AB partition type evaluation.
static void rd_pick_ab_part(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
    PC_TREE *pc_tree, PICK_MODE_CONTEXT *dst_ctxs[SUB_PARTITIONS_AB],
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB],
    const int ab_mi_pos[SUB_PARTITIONS_AB][2], const PARTITION_TYPE part_type,
    const MB_MODE_INFO **mode_cache) {
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const BLOCK_SIZE bsize = blk_params.bsize;
  int64_t this_rdcost = 0;

#if CONFIG_COLLECT_PARTITION_STATS
  PartitionTimingStats *part_timing_stats =
      &part_search_state->part_timing_stats;
  {
    RD_STATS tmp_sum_rdc;
    av1_init_rd_stats(&tmp_sum_rdc);
    tmp_sum_rdc.rate = part_search_state->partition_cost[part_type];
    tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
    if (best_rdc->rdcost - tmp_sum_rdc.rdcost >= 0) {
      start_partition_block_timer(part_timing_stats, part_type);
    }
  }
#endif

  // Test this partition and update the best partition.
  const bool find_best_ab_part = rd_test_partition3(
      cpi, td, tile_data, tp, pc_tree, best_rdc, &this_rdcost, dst_ctxs, mi_row,
      mi_col, bsize, part_type, ab_subsize, ab_mi_pos, mode_cache);
  part_search_state->found_best_partition |= find_best_ab_part;

#if CONFIG_COLLECT_PARTITION_STATS
  if (part_timing_stats->timer_is_on) {
    if (!find_best_ab_part) this_rdcost = INT64_MAX;
    end_partition_block_timer(part_timing_stats, part_type, this_rdcost);
  }
#endif
  av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
}

// Set mode search context.
static inline void set_mode_search_ctx(
    PC_TREE *pc_tree, const int is_ctx_ready[NUM_AB_PARTS][2],
    PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]) {
  mode_srch_ctx[HORZ_B][0] = &pc_tree->horizontal[0];
  mode_srch_ctx[VERT_B][0] = &pc_tree->vertical[0];

  if (is_ctx_ready[HORZ_A][0])
    mode_srch_ctx[HORZ_A][0] = &pc_tree->split[0]->none;

  if (is_ctx_ready[VERT_A][0])
    mode_srch_ctx[VERT_A][0] = &pc_tree->split[0]->none;

  if (is_ctx_ready[HORZ_A][1])
    mode_srch_ctx[HORZ_A][1] = &pc_tree->split[1]->none;
}

static inline void copy_partition_mode_from_mode_context(
    const MB_MODE_INFO **dst_mode, const PICK_MODE_CONTEXT *ctx) {
  if (ctx && ctx->rd_stats.rate < INT_MAX) {
    *dst_mode = &ctx->mic;
  } else {
    *dst_mode = NULL;
  }
}

static inline void copy_partition_mode_from_pc_tree(
    const MB_MODE_INFO **dst_mode, const PC_TREE *pc_tree) {
  if (pc_tree) {
    copy_partition_mode_from_mode_context(dst_mode, pc_tree->none);
  } else {
    *dst_mode = NULL;
  }
}

static inline void set_mode_cache_for_partition_ab(
    const MB_MODE_INFO **mode_cache, const PC_TREE *pc_tree,
    AB_PART_TYPE ab_part_type) {
  switch (ab_part_type) {
    case HORZ_A:
      copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]);
      copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]);
      copy_partition_mode_from_mode_context(&mode_cache[2],
                                            pc_tree->horizontal[1]);
      break;
    case HORZ_B:
      copy_partition_mode_from_mode_context(&mode_cache[0],
                                            pc_tree->horizontal[0]);
      copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]);
      copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]);
      break;
    case VERT_A:
      copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]);
      copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]);
      copy_partition_mode_from_mode_context(&mode_cache[2],
                                            pc_tree->vertical[1]);
      break;
    case VERT_B:
      copy_partition_mode_from_mode_context(&mode_cache[0],
                                            pc_tree->vertical[0]);
      copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]);
      copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]);
      break;
    default: assert(0 && "Invalid ab partition type!\n");
  }
}

// AB Partitions type search.
static void ab_partitions_search(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
    PC_TREE *pc_tree, PartitionSearchState *part_search_state,
    RD_STATS *best_rdc, RD_RECT_PART_WIN_INFO *rect_part_win_info,
    int pb_source_variance, int ext_partition_allowed,
    const AB_PART_TYPE start_type, const AB_PART_TYPE end_type) {
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const BLOCK_SIZE bsize = blk_params.bsize;

  if (part_search_state->terminate_partition_search) {
    return;
  }

  int ab_partitions_allowed[NUM_AB_PARTS];
  // Prune AB partitions
  av1_prune_ab_partitions(cpi, x, pc_tree, pb_source_variance, best_rdc->rdcost,
                          rect_part_win_info, ext_partition_allowed,
                          part_search_state, ab_partitions_allowed);

  // Flags to indicate whether the mode search is done.
  const int is_ctx_ready[NUM_AB_PARTS][2] = {
    { part_search_state->is_split_ctx_is_ready[0],
      part_search_state->is_split_ctx_is_ready[1] },
    { part_search_state->is_rect_ctx_is_ready[HORZ], 0 },
    { part_search_state->is_split_ctx_is_ready[0], 0 },
    { part_search_state->is_rect_ctx_is_ready[VERT], 0 }
  };

  // Current partition context.
  PICK_MODE_CONTEXT **cur_part_ctxs[NUM_AB_PARTS] = { pc_tree->horizontala,
                                                      pc_tree->horizontalb,
                                                      pc_tree->verticala,
                                                      pc_tree->verticalb };

  // Context of already evaluted partition types.
  PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2];
  // Set context of already evaluted partition types.
  set_mode_search_ctx(pc_tree, is_ctx_ready, mode_srch_ctx);

  // Array of sub-partition size of AB partition types.
  const BLOCK_SIZE ab_subsize[NUM_AB_PARTS][SUB_PARTITIONS_AB] = {
    { blk_params.split_bsize2, blk_params.split_bsize2,
      get_partition_subsize(bsize, PARTITION_HORZ_A) },
    { get_partition_subsize(bsize, PARTITION_HORZ_B), blk_params.split_bsize2,
      blk_params.split_bsize2 },
    { blk_params.split_bsize2, blk_params.split_bsize2,
      get_partition_subsize(bsize, PARTITION_VERT_A) },
    { get_partition_subsize(bsize, PARTITION_VERT_B), blk_params.split_bsize2,
      blk_params.split_bsize2 }
  };

  // Array of mi_row, mi_col positions corresponds to each sub-partition in AB
  // partition types.
  const int ab_mi_pos[NUM_AB_PARTS][SUB_PARTITIONS_AB][2] = {
    { { mi_row, mi_col },
      { mi_row, blk_params.mi_col_edge },
      { blk_params.mi_row_edge, mi_col } },
    { { mi_row, mi_col },
      { blk_params.mi_row_edge, mi_col },
      { blk_params.mi_row_edge, blk_params.mi_col_edge } },
    { { mi_row, mi_col },
      { blk_params.mi_row_edge, mi_col },
      { mi_row, blk_params.mi_col_edge } },
    { { mi_row, mi_col },
      { mi_row, blk_params.mi_col_edge },
      { blk_params.mi_row_edge, blk_params.mi_col_edge } }
  };

  // Loop over AB partition types.
  for (AB_PART_TYPE ab_part_type = start_type; ab_part_type <= end_type;
       ab_part_type++) {
    const PARTITION_TYPE part_type = ab_part_type + PARTITION_HORZ_A;

    // Check if the AB partition search is to be performed.
    if (!ab_partitions_allowed[ab_part_type]) {
      continue;
    }

    blk_params.subsize = get_partition_subsize(bsize, part_type);
    for (int i = 0; i < SUB_PARTITIONS_AB; i++) {
      // Set AB partition context.
      cur_part_ctxs[ab_part_type][i] = av1_alloc_pmc(
          cpi, ab_subsize[ab_part_type][i], &td->shared_coeff_buf);
      if (!cur_part_ctxs[ab_part_type][i])
        aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
                           "Failed to allocate PICK_MODE_CONTEXT");
      // Set mode as not ready.
      cur_part_ctxs[ab_part_type][i]->rd_mode_is_ready = 0;
    }

    if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab) {
      // We can copy directly the mode search results if we have already
      // searched the current block and the contexts match.
      if (is_ctx_ready[ab_part_type][0]) {
        av1_copy_tree_context(cur_part_ctxs[ab_part_type][0],
                              mode_srch_ctx[ab_part_type][0][0]);
        cur_part_ctxs[ab_part_type][0]->mic.partition = part_type;
        cur_part_ctxs[ab_part_type][0]->rd_mode_is_ready = 1;
        if (is_ctx_ready[ab_part_type][1]) {
          av1_copy_tree_context(cur_part_ctxs[ab_part_type][1],
                                mode_srch_ctx[ab_part_type][1][0]);
          cur_part_ctxs[ab_part_type][1]->mic.partition = part_type;
          cur_part_ctxs[ab_part_type][1]->rd_mode_is_ready = 1;
        }
      }
    }

    // Even if the contexts don't match, we can still speed up by reusing the
    // previous prediction mode.
    const MB_MODE_INFO *mode_cache[3] = { NULL, NULL, NULL };
    if (cpi->sf.part_sf.reuse_best_prediction_for_part_ab) {
      set_mode_cache_for_partition_ab(mode_cache, pc_tree, ab_part_type);
    }

    // Evaluation of AB partition type.
    rd_pick_ab_part(cpi, td, tile_data, tp, x, x_ctx, pc_tree,
                    cur_part_ctxs[ab_part_type], part_search_state, best_rdc,
                    ab_subsize[ab_part_type], ab_mi_pos[ab_part_type],
                    part_type, mode_cache);
  }
}

// Set mi positions for HORZ4 / VERT4 sub-block partitions.
static void set_mi_pos_partition4(const int inc_step[NUM_PART4_TYPES],
                                  int mi_pos[SUB_PARTITIONS_PART4][2],
                                  const int mi_row, const int mi_col) {
  for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; i++) {
    mi_pos[i][0] = mi_row + i * inc_step[HORZ4];
    mi_pos[i][1] = mi_col + i * inc_step[VERT4];
  }
}

// Set context and RD cost for HORZ4 / VERT4 partition types.
static void set_4_part_ctx_and_rdcost(
    MACROBLOCK *x, const AV1_COMP *const cpi, ThreadData *td,
    PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4],
    PartitionSearchState *part_search_state, PARTITION_TYPE partition_type,
    BLOCK_SIZE bsize) {
  // Initialize sum_rdc RD cost structure.
  av1_init_rd_stats(&part_search_state->sum_rdc);
  const int subsize = get_partition_subsize(bsize, partition_type);
  part_search_state->sum_rdc.rate =
      part_search_state->partition_cost[partition_type];
  part_search_state->sum_rdc.rdcost =
      RDCOST(x->rdmult, part_search_state->sum_rdc.rate, 0);
  for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) {
    cur_part_ctx[i] = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
    if (!cur_part_ctx[i])
      aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
                         "Failed to allocate PICK_MODE_CONTEXT");
  }
}

// Partition search of HORZ4 / VERT4 partition types.
static void rd_pick_4partition(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
    PC_TREE *pc_tree, PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4],
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    const int inc_step[NUM_PART4_TYPES], PARTITION_TYPE partition_type) {
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  // mi positions needed for HORZ4 and VERT4 partition types.
  int mi_pos_check[NUM_PART4_TYPES] = { cm->mi_params.mi_rows,
                                        cm->mi_params.mi_cols };
  const PART4_TYPES part4_idx = (partition_type != PARTITION_HORZ_4);
  int mi_pos[SUB_PARTITIONS_PART4][2];

  blk_params.subsize = get_partition_subsize(blk_params.bsize, partition_type);
  // Set partition context and RD cost.
  set_4_part_ctx_and_rdcost(x, cpi, td, cur_part_ctx, part_search_state,
                            partition_type, blk_params.bsize);
  // Set mi positions for sub-block sizes.
  set_mi_pos_partition4(inc_step, mi_pos, blk_params.mi_row, blk_params.mi_col);
#if CONFIG_COLLECT_PARTITION_STATS
  PartitionTimingStats *part_timing_stats =
      &part_search_state->part_timing_stats;
  if (best_rdc->rdcost - part_search_state->sum_rdc.rdcost >= 0) {
    start_partition_block_timer(part_timing_stats, partition_type);
  }
#endif
  // Loop over sub-block partitions.
  for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) {
    if (i > 0 && mi_pos[i][part4_idx] >= mi_pos_check[part4_idx]) break;

    // Sub-block evaluation of Horz4 / Vert4 partition type.
    cur_part_ctx[i]->rd_mode_is_ready = 0;
    if (!rd_try_subblock(
            cpi, td, tile_data, tp, (i == SUB_PARTITIONS_PART4 - 1),
            mi_pos[i][0], mi_pos[i][1], blk_params.subsize, *best_rdc,
            &part_search_state->sum_rdc, partition_type, cur_part_ctx[i])) {
      av1_invalid_rd_stats(&part_search_state->sum_rdc);
      break;
    }
  }

  // Calculate the total cost and update the best partition.
  av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc);
  if (part_search_state->sum_rdc.rdcost < best_rdc->rdcost) {
    *best_rdc = part_search_state->sum_rdc;
    part_search_state->found_best_partition = true;
    pc_tree->partitioning = partition_type;
  }
#if CONFIG_COLLECT_PARTITION_STATS
  if (part_timing_stats->timer_is_on) {
    end_partition_block_timer(part_timing_stats, partition_type,
                              part_search_state->sum_rdc.rdcost);
  }
#endif
  av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col,
                      blk_params.bsize, av1_num_planes(cm));
}

// Do not evaluate extended partitions if NONE partition is skippable.
static inline int prune_ext_part_none_skippable(
    PICK_MODE_CONTEXT *part_none, int must_find_valid_partition,
    int skip_non_sq_part_based_on_none, BLOCK_SIZE bsize) {
  if ((skip_non_sq_part_based_on_none >= 1) && (part_none != NULL)) {
    if (part_none->skippable && !must_find_valid_partition &&
        bsize >= BLOCK_16X16) {
      return 1;
    }
  }
  return 0;
}

// Allow ab partition search
static int allow_ab_partition_search(PartitionSearchState *part_search_state,
                                     PARTITION_SPEED_FEATURES *part_sf,
                                     PARTITION_TYPE curr_best_part,
                                     int must_find_valid_partition,
                                     int prune_ext_part_state,
                                     int64_t best_rdcost) {
  const PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const BLOCK_SIZE bsize = blk_params.bsize;

  // Do not prune if there is no valid partition
  if (best_rdcost == INT64_MAX) return 1;

  // Determine bsize threshold to evaluate ab partitions
  BLOCK_SIZE ab_bsize_thresh = part_sf->ext_partition_eval_thresh;
  if (part_sf->ext_part_eval_based_on_cur_best && !must_find_valid_partition &&
      !(curr_best_part == PARTITION_HORZ || curr_best_part == PARTITION_VERT))
    ab_bsize_thresh = BLOCK_128X128;

  // ab partitions are only allowed for square block sizes BLOCK_16X16 or
  // higher, so ab_bsize_thresh must be large enough to exclude BLOCK_4X4 and
  // BLOCK_8X8.
  assert(ab_bsize_thresh >= BLOCK_8X8);

  int ab_partition_allowed =
      part_search_state->do_rectangular_split && bsize > ab_bsize_thresh &&
      av1_blk_has_rows_and_cols(&blk_params) && !prune_ext_part_state;

  return ab_partition_allowed;
}

// Prune 4-way partitions based on the number of horz/vert wins
// in the current block and sub-blocks in PARTITION_SPLIT.
static void prune_4_partition_using_split_info(
    AV1_COMP *const cpi, MACROBLOCK *x, PartitionSearchState *part_search_state,
    int part4_search_allowed[NUM_PART4_TYPES]) {
  PART4_TYPES cur_part[NUM_PART4_TYPES] = { HORZ4, VERT4 };
  // Count of child blocks in which HORZ or VERT partition has won
  int num_child_rect_win[NUM_RECT_PARTS] = { 0, 0 };
  // Prune HORZ4/VERT4 partitions based on number of HORZ/VERT winners of
  // split partiitons.
  // Conservative pruning for high quantizers.
  const int num_win_thresh = AOMMIN(3 * (MAXQ - x->qindex) / MAXQ + 1, 3);

  for (RECT_PART_TYPE i = HORZ; i < NUM_RECT_PARTS; i++) {
    if (!(cpi->sf.part_sf.prune_ext_part_using_split_info &&
          part4_search_allowed[cur_part[i]]))
      continue;
    // Loop over split partitions.
    // Get rectangular partitions winner info of split partitions.
    for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; idx++)
      num_child_rect_win[i] +=
          (part_search_state->split_part_rect_win[idx].rect_part_win[i]) ? 1
                                                                         : 0;
    if (num_child_rect_win[i] < num_win_thresh) {
      part4_search_allowed[cur_part[i]] = 0;
    }
  }
}

// Prune 4-way partition search.
static void prune_4_way_partition_search(
    AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree,
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    int pb_source_variance, int prune_ext_part_state,
    int part4_search_allowed[NUM_PART4_TYPES]) {
  const PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const BLOCK_SIZE bsize = blk_params.bsize;

  // Do not prune if there is no valid partition
  if (best_rdc->rdcost == INT64_MAX) return;

  // Determine bsize threshold to evaluate 4-way partitions
  BLOCK_SIZE part4_bsize_thresh = cpi->sf.part_sf.ext_partition_eval_thresh;
  if (cpi->sf.part_sf.ext_part_eval_based_on_cur_best &&
      !x->must_find_valid_partition && pc_tree->partitioning == PARTITION_NONE)
    part4_bsize_thresh = BLOCK_128X128;

  // 4-way partitions are only allowed for BLOCK_16X16, BLOCK_32X32, and
  // BLOCK_64X64, so part4_bsize_thresh must be large enough to exclude
  // BLOCK_4X4 and BLOCK_8X8.
  assert(part4_bsize_thresh >= BLOCK_8X8);

  bool partition4_allowed =
      part_search_state->do_rectangular_split && bsize > part4_bsize_thresh &&
      av1_blk_has_rows_and_cols(&blk_params) && !prune_ext_part_state;

  // Disable 4-way partition search flags for width less than a multiple of the
  // minimum partition width.
  if (blk_params.width < (blk_params.min_partition_size_1d
                          << cpi->sf.part_sf.prune_part4_search)) {
    part4_search_allowed[HORZ4] = 0;
    part4_search_allowed[VERT4] = 0;
    return;
  }

  PARTITION_TYPE cur_part[NUM_PART4_TYPES] = { PARTITION_HORZ_4,
                                               PARTITION_VERT_4 };
  const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
  // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or
  // PARTITION_VERT_4 for this block. This is almost the same as
  // partition4_allowed, except that we don't allow 128x32 or 32x128
  // blocks, so we require that bsize is not BLOCK_128X128.
  partition4_allowed &=
      part_cfg->enable_1to4_partitions && bsize != BLOCK_128X128;

  for (PART4_TYPES i = HORZ4; i < NUM_PART4_TYPES; i++) {
    part4_search_allowed[i] =
        partition4_allowed && part_search_state->partition_rect_allowed[i] &&
        get_plane_block_size(get_partition_subsize(bsize, cur_part[i]),
                             part_search_state->ss_x,
                             part_search_state->ss_y) != BLOCK_INVALID;
  }
  // Pruning: pruning out 4-way partitions based on the current best partition.
  if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 2) {
    part4_search_allowed[HORZ4] &= (pc_tree->partitioning == PARTITION_HORZ ||
                                    pc_tree->partitioning == PARTITION_HORZ_A ||
                                    pc_tree->partitioning == PARTITION_HORZ_B ||
                                    pc_tree->partitioning == PARTITION_SPLIT ||
                                    pc_tree->partitioning == PARTITION_NONE);
    part4_search_allowed[VERT4] &= (pc_tree->partitioning == PARTITION_VERT ||
                                    pc_tree->partitioning == PARTITION_VERT_A ||
                                    pc_tree->partitioning == PARTITION_VERT_B ||
                                    pc_tree->partitioning == PARTITION_SPLIT ||
                                    pc_tree->partitioning == PARTITION_NONE);
  }

  // Pruning: pruning out some 4-way partitions using a DNN taking rd costs of
  // sub-blocks from basic partition types.
  if (cpi->sf.part_sf.ml_prune_partition && partition4_allowed &&
      part_search_state->partition_rect_allowed[HORZ] &&
      part_search_state->partition_rect_allowed[VERT]) {
    av1_ml_prune_4_partition(cpi, x, pc_tree->partitioning, best_rdc->rdcost,
                             part_search_state, part4_search_allowed,
                             pb_source_variance);
  }

  // Pruning: pruning out 4-way partitions based on the number of horz/vert wins
  // in the current block and sub-blocks in PARTITION_SPLIT.
  prune_4_partition_using_split_info(cpi, x, part_search_state,
                                     part4_search_allowed);
}

// Set params needed for PARTITION_NONE search.
static void set_none_partition_params(const AV1_COMP *const cpi, ThreadData *td,
                                      MACROBLOCK *x, PC_TREE *pc_tree,
                                      PartitionSearchState *part_search_state,
                                      RD_STATS *best_remain_rdcost,
                                      RD_STATS *best_rdc, int *pt_cost) {
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  RD_STATS partition_rdcost;
  // Set PARTITION_NONE context.
  if (pc_tree->none == NULL)
    pc_tree->none = av1_alloc_pmc(cpi, blk_params.bsize, &td->shared_coeff_buf);
  if (!pc_tree->none)
    aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
                       "Failed to allocate PICK_MODE_CONTEXT");

  // Set PARTITION_NONE type cost.
  if (part_search_state->partition_none_allowed) {
    if (blk_params.bsize_at_least_8x8) {
      *pt_cost = part_search_state->partition_cost[PARTITION_NONE] < INT_MAX
                     ? part_search_state->partition_cost[PARTITION_NONE]
                     : 0;
    }

    // Initialize the RD stats structure.
    av1_init_rd_stats(&partition_rdcost);
    partition_rdcost.rate = *pt_cost;
    av1_rd_cost_update(x->rdmult, &partition_rdcost);
    av1_rd_stats_subtraction(x->rdmult, best_rdc, &partition_rdcost,
                             best_remain_rdcost);
  }
}

// Skip other partitions based on PARTITION_NONE rd cost.
static void prune_partitions_after_none(AV1_COMP *const cpi, MACROBLOCK *x,
                                        SIMPLE_MOTION_DATA_TREE *sms_tree,
                                        PICK_MODE_CONTEXT *ctx_none,
                                        PartitionSearchState *part_search_state,
                                        RD_STATS *best_rdc,
                                        unsigned int *pb_source_variance) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  const PartitionBlkParams blk_params = part_search_state->part_blk_params;
  RD_STATS *this_rdc = &part_search_state->this_rdc;
  const BLOCK_SIZE bsize = blk_params.bsize;
  assert(bsize < BLOCK_SIZES_ALL);

  if (!frame_is_intra_only(cm) &&
      (part_search_state->do_square_split ||
       part_search_state->do_rectangular_split) &&
      !x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) {
    const int use_ml_based_breakout =
        bsize <= cpi->sf.part_sf.use_square_partition_only_threshold &&
        bsize > BLOCK_4X4 && cpi->sf.part_sf.ml_predict_breakout_level >= 1;
    if (use_ml_based_breakout) {
      av1_ml_predict_breakout(cpi, x, this_rdc, *pb_source_variance, xd->bd,
                              part_search_state);
    }

    // Adjust dist breakout threshold according to the partition size.
    const int64_t dist_breakout_thr =
        cpi->sf.part_sf.partition_search_breakout_dist_thr >>
        ((2 * (MAX_SB_SIZE_LOG2 - 2)) -
         (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]));
    const int rate_breakout_thr =
        cpi->sf.part_sf.partition_search_breakout_rate_thr *
        num_pels_log2_lookup[bsize];
    // If all y, u, v transform blocks in this partition are skippable,
    // and the dist & rate are within the thresholds, the partition
    // search is terminated for current branch of the partition search
    // tree. The dist & rate thresholds are set to 0 at speed 0 to
    // disable the early termination at that speed.
    if (best_rdc->dist < dist_breakout_thr &&
        best_rdc->rate < rate_breakout_thr) {
      part_search_state->do_square_split = 0;
      part_search_state->do_rectangular_split = 0;
    }
  }

  // Early termination: using simple_motion_search features and the
  // rate, distortion, and rdcost of PARTITION_NONE, a DNN will make a
  // decision on early terminating at PARTITION_NONE.
  if (cpi->sf.part_sf.simple_motion_search_early_term_none && cm->show_frame &&
      !frame_is_intra_only(cm) && bsize >= BLOCK_16X16 &&
      av1_blk_has_rows_and_cols(&blk_params) && this_rdc->rdcost < INT64_MAX &&
      this_rdc->rdcost >= 0 && this_rdc->rate < INT_MAX &&
      this_rdc->rate >= 0 &&
      (part_search_state->do_square_split ||
       part_search_state->do_rectangular_split)) {
    av1_simple_motion_search_early_term_none(cpi, x, sms_tree, this_rdc,
                                             part_search_state);
  }
}

// Decide early termination and rectangular partition pruning
// based on PARTITION_NONE and PARTITION_SPLIT costs.
static void prune_partitions_after_split(
    AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    int64_t part_none_rd, int64_t part_split_rd) {
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const BLOCK_SIZE bsize = blk_params.bsize;
  assert(bsize < BLOCK_SIZES_ALL);

  // Early termination: using the rd costs of PARTITION_NONE and subblocks
  // from PARTITION_SPLIT to determine an early breakout.
  if (cpi->sf.part_sf.ml_early_term_after_part_split_level &&
      !frame_is_intra_only(cm) &&
      !part_search_state->terminate_partition_search &&
      part_search_state->do_rectangular_split &&
      (part_search_state->partition_rect_allowed[HORZ] ||
       part_search_state->partition_rect_allowed[VERT])) {
    av1_ml_early_term_after_split(
        cpi, x, sms_tree, best_rdc->rdcost, part_none_rd, part_split_rd,
        part_search_state->split_rd, part_search_state);
  }

  // Use the rd costs of PARTITION_NONE and subblocks from PARTITION_SPLIT
  // to prune out rectangular partitions in some directions.
  if (!cpi->sf.part_sf.ml_early_term_after_part_split_level &&
      cpi->sf.part_sf.ml_prune_partition && !frame_is_intra_only(cm) &&
      (part_search_state->partition_rect_allowed[HORZ] ||
       part_search_state->partition_rect_allowed[VERT]) &&
      !(part_search_state->prune_rect_part[HORZ] ||
        part_search_state->prune_rect_part[VERT]) &&
      !part_search_state->terminate_partition_search) {
    av1_setup_src_planes(x, cpi->source, mi_row, mi_col, av1_num_planes(cm),
                         bsize);
    av1_ml_prune_rect_partition(cpi, x, best_rdc->rdcost,
                                part_search_state->none_rd,
                                part_search_state->split_rd, part_search_state);
  }
}

// Returns true if either of the left and top neighbor blocks is larger than
// the current block; false otherwise.
static inline bool is_neighbor_blk_larger_than_cur_blk(const MACROBLOCKD *xd,
                                                       BLOCK_SIZE bsize) {
  const int cur_blk_area = (block_size_high[bsize] * block_size_wide[bsize]);
  if (xd->left_available) {
    const BLOCK_SIZE left_bsize = xd->left_mbmi->bsize;
    if (block_size_high[left_bsize] * block_size_wide[left_bsize] >
        cur_blk_area)
      return true;
  }

  if (xd->up_available) {
    const BLOCK_SIZE above_bsize = xd->above_mbmi->bsize;
    if (block_size_high[above_bsize] * block_size_wide[above_bsize] >
        cur_blk_area)
      return true;
  }
  return false;
}

static inline void prune_rect_part_using_none_pred_mode(
    const MACROBLOCKD *xd, PartitionSearchState *part_state,
    PREDICTION_MODE mode, BLOCK_SIZE bsize) {
  if (mode == DC_PRED || mode == SMOOTH_PRED) {
    // If the prediction mode of NONE partition is either DC_PRED or
    // SMOOTH_PRED, it indicates that the current block has less variation. In
    // this case, HORZ and VERT partitions are pruned if at least one of left
    // and top neighbor blocks is larger than the current block.
    if (is_neighbor_blk_larger_than_cur_blk(xd, bsize)) {
      part_state->prune_rect_part[HORZ] = 1;
      part_state->prune_rect_part[VERT] = 1;
    }
  } else if (mode == D67_PRED || mode == V_PRED || mode == D113_PRED) {
    // If the prediction mode chosen by NONE partition is close to 90 degrees,
    // it implies a dominant vertical pattern, and the chance of choosing a
    // vertical rectangular partition is high. Hence, horizontal partition is
    // pruned in these cases.
    part_state->prune_rect_part[HORZ] = 1;
  } else if (mode == D157_PRED || mode == H_PRED || mode == D203_PRED) {
    // If the prediction mode chosen by NONE partition is close to 180 degrees,
    // it implies a dominant horizontal pattern, and the chance of choosing a
    // horizontal rectangular partition is high. Hence, vertical partition is
    // pruned in these cases.
    part_state->prune_rect_part[VERT] = 1;
  }
}

// PARTITION_NONE search.
static void none_partition_search(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, MACROBLOCK *x,
    PC_TREE *pc_tree, SIMPLE_MOTION_DATA_TREE *sms_tree,
    RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    unsigned int *pb_source_variance, int64_t *none_rd, int64_t *part_none_rd) {
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  RD_STATS *this_rdc = &part_search_state->this_rdc;
  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const BLOCK_SIZE bsize = blk_params.bsize;
  assert(bsize < BLOCK_SIZES_ALL);

  if (part_search_state->terminate_partition_search ||
      !part_search_state->partition_none_allowed)
    return;

  int pt_cost = 0;
  RD_STATS best_remain_rdcost;
  av1_invalid_rd_stats(&best_remain_rdcost);

  // Set PARTITION_NONE context and cost.
  set_none_partition_params(cpi, td, x, pc_tree, part_search_state,
                            &best_remain_rdcost, best_rdc, &pt_cost);

#if CONFIG_COLLECT_PARTITION_STATS
  // Timer start for partition None.
  PartitionTimingStats *part_timing_stats =
      &part_search_state->part_timing_stats;
  if (best_remain_rdcost.rdcost >= 0) {
    start_partition_block_timer(part_timing_stats, PARTITION_NONE);
  }
#endif
  // PARTITION_NONE evaluation and cost update.
  pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc, PARTITION_NONE,
                bsize, pc_tree->none, best_remain_rdcost);

  av1_rd_cost_update(x->rdmult, this_rdc);

#if CONFIG_COLLECT_PARTITION_STATS
  // Timer end for partition None.
  if (part_timing_stats->timer_is_on) {
    RD_STATS tmp_rdc;
    av1_init_rd_stats(&tmp_rdc);
    if (this_rdc->rate != INT_MAX) {
      tmp_rdc.rate = this_rdc->rate;
      tmp_rdc.dist = this_rdc->dist;
      tmp_rdc.rdcost = this_rdc->rdcost;
      if (blk_params.bsize_at_least_8x8) {
        tmp_rdc.rate += pt_cost;
        tmp_rdc.rdcost = RDCOST(x->rdmult, tmp_rdc.rate, tmp_rdc.dist);
      }
    }
    end_partition_block_timer(part_timing_stats, PARTITION_NONE,
                              tmp_rdc.rdcost);
  }
#endif
  *pb_source_variance = x->source_variance;
  if (none_rd) *none_rd = this_rdc->rdcost;
  part_search_state->none_rd = this_rdc->rdcost;
  if (this_rdc->rate != INT_MAX) {
    // Record picked ref frame to prune ref frames for other partition types.
    if (cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions) {
      const int ref_type = av1_ref_frame_type(pc_tree->none->mic.ref_frame);
      av1_update_picked_ref_frames_mask(
          x, ref_type, bsize, cm->seq_params->mib_size, mi_row, mi_col);
    }

    // Calculate the total cost and update the best partition.
    if (blk_params.bsize_at_least_8x8) {
      this_rdc->rate += pt_cost;
      this_rdc->rdcost = RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist);
    }
    *part_none_rd = this_rdc->rdcost;
    if (this_rdc->rdcost < best_rdc->rdcost) {
      *best_rdc = *this_rdc;
      part_search_state->found_best_partition = true;
      if (blk_params.bsize_at_least_8x8) {
        pc_tree->partitioning = PARTITION_NONE;
      }

      // Disable split and rectangular partition search
      // based on PARTITION_NONE cost.
      prune_partitions_after_none(cpi, x, sms_tree, pc_tree->none,
                                  part_search_state, best_rdc,
                                  pb_source_variance);
    }

    if (cpi->sf.part_sf.prune_rect_part_using_none_pred_mode)
      prune_rect_part_using_none_pred_mode(&x->e_mbd, part_search_state,
                                           pc_tree->none->mic.mode, bsize);
  }
  av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
}

// PARTITION_SPLIT search.
static void split_partition_search(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree,
    SIMPLE_MOTION_DATA_TREE *sms_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    SB_MULTI_PASS_MODE multi_pass_mode, int64_t *part_split_rd) {
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const BLOCK_SIZE bsize = blk_params.bsize;
  assert(bsize < BLOCK_SIZES_ALL);
  RD_STATS sum_rdc = part_search_state->sum_rdc;
  const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);

  // Check if partition split is allowed.
  if (part_search_state->terminate_partition_search ||
      !part_search_state->do_square_split)
    return;

  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
    if (pc_tree->split[i] == NULL)
      pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
    if (!pc_tree->split[i])
      aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
                         "Failed to allocate PC_TREE");
    pc_tree->split[i]->index = i;
  }

  // Initialization of this partition RD stats.
  av1_init_rd_stats(&sum_rdc);
  sum_rdc.rate = part_search_state->partition_cost[PARTITION_SPLIT];
  sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);

  int idx;
#if CONFIG_COLLECT_PARTITION_STATS
  PartitionTimingStats *part_timing_stats =
      &part_search_state->part_timing_stats;
  if (best_rdc->rdcost - sum_rdc.rdcost >= 0) {
    start_partition_block_timer(part_timing_stats, PARTITION_SPLIT);
  }
#endif
  // Recursive partition search on 4 sub-blocks.
  for (idx = 0; idx < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc->rdcost;
       ++idx) {
    const int x_idx = (idx & 1) * blk_params.mi_step;
    const int y_idx = (idx >> 1) * blk_params.mi_step;

    if (mi_row + y_idx >= mi_params->mi_rows ||
        mi_col + x_idx >= mi_params->mi_cols)
      continue;

    pc_tree->split[idx]->index = idx;
    int64_t *p_split_rd = &part_search_state->split_rd[idx];
    RD_STATS best_remain_rdcost;
    av1_rd_stats_subtraction(x->rdmult, best_rdc, &sum_rdc,
                             &best_remain_rdcost);

    int curr_quad_tree_idx = 0;
    if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
      curr_quad_tree_idx = part_search_state->intra_part_info->quad_tree_idx;
      part_search_state->intra_part_info->quad_tree_idx =
          4 * curr_quad_tree_idx + idx + 1;
    }
    // Split partition evaluation of corresponding idx.
    // If the RD cost exceeds the best cost then do not
    // evaluate other split sub-partitions.
    SIMPLE_MOTION_DATA_TREE *const sms_tree_split =
        (sms_tree == NULL) ? NULL : sms_tree->split[idx];
    if (!av1_rd_pick_partition(
            cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
            &part_search_state->this_rdc, best_remain_rdcost,
            pc_tree->split[idx], sms_tree_split, p_split_rd, multi_pass_mode,
            &part_search_state->split_part_rect_win[idx])) {
      av1_invalid_rd_stats(&sum_rdc);
      break;
    }
    if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
      part_search_state->intra_part_info->quad_tree_idx = curr_quad_tree_idx;
    }

    sum_rdc.rate += part_search_state->this_rdc.rate;
    sum_rdc.dist += part_search_state->this_rdc.dist;
    av1_rd_cost_update(x->rdmult, &sum_rdc);

    // Set split ctx as ready for use.
    if (idx <= 1 && (bsize <= BLOCK_8X8 ||
                     pc_tree->split[idx]->partitioning == PARTITION_NONE)) {
      const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none->mic;
      const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
      // Neither palette mode nor cfl predicted.
      if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
        if (mbmi->uv_mode != UV_CFL_PRED)
          part_search_state->is_split_ctx_is_ready[idx] = 1;
      }
    }
  }
#if CONFIG_COLLECT_PARTITION_STATS
  if (part_timing_stats->timer_is_on) {
    end_partition_block_timer(part_timing_stats, PARTITION_SPLIT,
                              sum_rdc.rdcost);
  }
#endif
  const int reached_last_index = (idx == SUB_PARTITIONS_SPLIT);

  // Calculate the total cost and update the best partition.
  *part_split_rd = sum_rdc.rdcost;
  if (reached_last_index && sum_rdc.rdcost < best_rdc->rdcost) {
    sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
    if (sum_rdc.rdcost < best_rdc->rdcost) {
      *best_rdc = sum_rdc;
      part_search_state->found_best_partition = true;
      pc_tree->partitioning = PARTITION_SPLIT;
    }
  } else if (cpi->sf.part_sf.less_rectangular_check_level > 0) {
    // Skip rectangular partition test when partition type none gives better
    // rd than partition type split.
    if (cpi->sf.part_sf.less_rectangular_check_level == 2 || idx <= 2) {
      const int partition_none_valid = part_search_state->none_rd > 0;
      const int partition_none_better =
          part_search_state->none_rd < sum_rdc.rdcost;
      part_search_state->do_rectangular_split &=
          !(partition_none_valid && partition_none_better);
    }
  }
  // Restore the context for the following cases:
  // 1) Current block size not more than maximum partition size as dry run
  // encode happens for these cases
  // 2) Current block size same as superblock size as the final encode
  // happens for this case
  if (bsize <= x->sb_enc.max_partition_size || bsize == cm->seq_params->sb_size)
    av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
}

// The max number of nodes in the partition tree.
// The number of leaf nodes is (128x128) / (4x4) = 1024.
// The number of All possible parent nodes is 1 + 2 + ... + 512 = 1023.
#define NUM_NODES

static void write_partition_tree(AV1_COMP *const cpi,
                                 const PC_TREE *const pc_tree,
                                 const BLOCK_SIZE bsize, const int mi_row,
                                 const int mi_col) {
  (void)mi_row;
  (void)mi_col;
  const char *path = cpi->oxcf.partition_info_path;
  char filename[256];
  snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path,
           cpi->sb_counter, 0);
  FILE *pfile = fopen(filename, "w");
  fprintf(pfile, "%d", bsize);

  // Write partition type with BFS order.
  const PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
  int q_idx = 0;
  int last_idx = 1;
  int num_nodes = 1;

  // First traversal to get number of leaf nodes.
  tree_node_queue[q_idx] = pc_tree;
  while (num_nodes > 0) {
    const PC_TREE *node = tree_node_queue[q_idx];
    if (node->partitioning == PARTITION_SPLIT) {
      for (int i = 0; i < 4; ++i) {
        tree_node_queue[last_idx] = node->split[i];
        ++last_idx;
      }
      num_nodes += 4;
    }
    --num_nodes;
    ++q_idx;
  }
  const int num_leafs = last_idx;
  fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1);

  // Write partitions for each node.
  q_idx = 0;
  last_idx = 1;
  num_nodes = 1;
  tree_node_queue[q_idx] = pc_tree;
  while (num_nodes > 0) {
    const PC_TREE *node = tree_node_queue[q_idx];
    fprintf(pfile, ",%d", node->partitioning);
    if (node->partitioning == PARTITION_SPLIT) {
      for (int i = 0; i < 4; ++i) {
        tree_node_queue[last_idx] = node->split[i];
        ++last_idx;
      }
      num_nodes += 4;
    }
    --num_nodes;
    ++q_idx;
  }
  fprintf(pfile, "\n");

  fclose(pfile);
}

#if CONFIG_PARTITION_SEARCH_ORDER
static void verify_write_partition_tree(const AV1_COMP *const cpi,
                                        const PC_TREE *const pc_tree,
                                        const BLOCK_SIZE bsize,
                                        const int config_id, const int mi_row,
                                        const int mi_col) {
  (void)mi_row;
  (void)mi_col;
  const char *path = cpi->oxcf.partition_info_path;
  char filename[256];
  snprintf(filename, sizeof(filename), "%s/verify_partition_tree_sb%d_c%d",
           path, cpi->sb_counter, config_id);
  FILE *pfile = fopen(filename, "w");
  fprintf(pfile, "%d", bsize);

  // Write partition type with BFS order.
  const PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
  int q_idx = 0;
  int last_idx = 1;
  int num_nodes = 1;

  // First traversal to get number of leaf nodes.
  tree_node_queue[q_idx] = pc_tree;
  while (num_nodes > 0) {
    const PC_TREE *node = tree_node_queue[q_idx];
    if (node != NULL && node->partitioning == PARTITION_SPLIT) {
      for (int i = 0; i < 4; ++i) {
        tree_node_queue[last_idx] = node->split[i];
        ++last_idx;
      }
      num_nodes += 4;
    }
    --num_nodes;
    ++q_idx;
  }
  const int num_leafs = last_idx;
  fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1);

  // Write partitions for each node.
  q_idx = 0;
  last_idx = 1;
  num_nodes = 1;
  tree_node_queue[q_idx] = pc_tree;
  while (num_nodes > 0) {
    const PC_TREE *node = tree_node_queue[q_idx];
    if (node != NULL) {  // suppress warning
      fprintf(pfile, ",%d", node->partitioning);
      if (node->partitioning == PARTITION_SPLIT) {
        for (int i = 0; i < 4; ++i) {
          tree_node_queue[last_idx] = node->split[i];
          ++last_idx;
        }
        num_nodes += 4;
      }
    }
    --num_nodes;
    ++q_idx;
  }
  fprintf(pfile, "\n");

  fclose(pfile);
}

static int read_partition_tree(AV1_COMP *const cpi, PC_TREE *const pc_tree,
                               struct aom_internal_error_info *error_info,
                               const int config_id) {
  const AV1_COMMON *const cm = &cpi->common;
  const char *path = cpi->oxcf.partition_info_path;
  char filename[256];
  snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path,
           cpi->sb_counter, config_id);
  FILE *pfile = fopen(filename, "r");
  if (pfile == NULL) {
    aom_internal_error(cm->error, AOM_CODEC_ERROR, "Can't find input file: %s.",
                       filename);
  }

  int read_bsize;
  int num_nodes;
  int num_configs;
  fscanf(pfile, "%d,%d,%d", &read_bsize, &num_nodes, &num_configs);
  assert(read_bsize == cpi->common.seq_params->sb_size);
  BLOCK_SIZE bsize = (BLOCK_SIZE)read_bsize;
  assert(bsize == pc_tree->block_size);

  PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
  int last_idx = 1;
  int q_idx = 0;
  tree_node_queue[q_idx] = pc_tree;
  while (num_nodes > 0) {
    int partitioning;
    fscanf(pfile, ",%d", &partitioning);
    assert(partitioning >= PARTITION_NONE &&
           partitioning < EXT_PARTITION_TYPES);
    PC_TREE *node = tree_node_queue[q_idx];
    if (node != NULL) {
      node->partitioning = partitioning;
      bsize = node->block_size;
    }
    if (partitioning == PARTITION_SPLIT) {
      const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
      for (int i = 0; i < 4; ++i) {
        if (node != NULL) {  // Suppress warning
          node->split[i] = av1_alloc_pc_tree_node(subsize);
          if (!node->split[i])
            aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
                               "Failed to allocate PC_TREE");
          node->split[i]->index = i;
          tree_node_queue[last_idx] = node->split[i];
          ++last_idx;
        }
      }
    }
    --num_nodes;
    ++q_idx;
  }
  fclose(pfile);

  return num_configs;
}

static RD_STATS rd_search_for_fixed_partition(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    TokenExtra **tp, SIMPLE_MOTION_DATA_TREE *sms_tree, int mi_row, int mi_col,
    const BLOCK_SIZE bsize, PC_TREE *pc_tree) {
  const PARTITION_TYPE partition = pc_tree->partitioning;
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  TileInfo *const tile_info = &tile_data->tile_info;
  RD_STATS best_rdc;
  av1_invalid_rd_stats(&best_rdc);
  int sum_subblock_rate = 0;
  int64_t sum_subblock_dist = 0;
  PartitionSearchState part_search_state;
  init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col,
                                     bsize);
  // Override partition costs at the edges of the frame in the same
  // way as in read_partition (see decodeframe.c).
  PartitionBlkParams blk_params = part_search_state.part_blk_params;
  if (!av1_blk_has_rows_and_cols(&blk_params))
    set_partition_cost_for_edge_blk(cm, &part_search_state);

  av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);

  // Save rdmult before it might be changed, so it can be restored later.
  const int orig_rdmult = x->rdmult;
  setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
  (void)orig_rdmult;

  // Set the context.
  RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
  xd->above_txfm_context =
      cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
  av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);

  assert(bsize < BLOCK_SIZES_ALL);
  unsigned int pb_source_variance = UINT_MAX;
  int64_t part_none_rd = INT64_MAX;
  int64_t none_rd = INT64_MAX;
  int inc_step[NUM_PART4_TYPES] = { 0 };
  if (partition == PARTITION_HORZ_4) inc_step[HORZ4] = mi_size_high[bsize] / 4;
  if (partition == PARTITION_VERT_4) inc_step[VERT4] = mi_size_wide[bsize] / 4;

  switch (partition) {
    case PARTITION_NONE:
      none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx,
                            &part_search_state, &best_rdc, &pb_source_variance,
                            &none_rd, &part_none_rd);
      break;
    case PARTITION_HORZ:
      rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
                                   &part_search_state, &best_rdc, NULL, HORZ,
                                   HORZ);
      break;
    case PARTITION_VERT:
      rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
                                   &part_search_state, &best_rdc, NULL, VERT,
                                   VERT);
      break;
    case PARTITION_HORZ_A:
      ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                           &part_search_state, &best_rdc, NULL,
                           pb_source_variance, 1, HORZ_A, HORZ_A);
      break;
    case PARTITION_HORZ_B:
      ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                           &part_search_state, &best_rdc, NULL,
                           pb_source_variance, 1, HORZ_B, HORZ_B);
      break;
    case PARTITION_VERT_A:
      ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                           &part_search_state, &best_rdc, NULL,
                           pb_source_variance, 1, VERT_A, VERT_A);
      break;
    case PARTITION_VERT_B:
      ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                           &part_search_state, &best_rdc, NULL,
                           pb_source_variance, 1, VERT_B, VERT_B);
      break;
    case PARTITION_HORZ_4:
      rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                         pc_tree->horizontal4, &part_search_state, &best_rdc,
                         inc_step, PARTITION_HORZ_4);
      break;
    case PARTITION_VERT_4:
      rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                         pc_tree->vertical4, &part_search_state, &best_rdc,
                         inc_step, PARTITION_VERT_4);
      break;
    case PARTITION_SPLIT:
      for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; ++idx) {
        const BLOCK_SIZE subsize =
            get_partition_subsize(bsize, PARTITION_SPLIT);
        assert(subsize < BLOCK_SIZES_ALL);
        const int next_mi_row =
            idx < 2 ? mi_row : mi_row + mi_size_high[subsize];
        const int next_mi_col =
            idx % 2 == 0 ? mi_col : mi_col + mi_size_wide[subsize];
        if (next_mi_row >= cm->mi_params.mi_rows ||
            next_mi_col >= cm->mi_params.mi_cols) {
          continue;
        }
        const RD_STATS subblock_rdc = rd_search_for_fixed_partition(
            cpi, td, tile_data, tp, sms_tree->split[idx], next_mi_row,
            next_mi_col, subsize, pc_tree->split[idx]);
        sum_subblock_rate += subblock_rdc.rate;
        sum_subblock_dist += subblock_rdc.dist;
      }
      best_rdc.rate = sum_subblock_rate;
      best_rdc.rate += part_search_state.partition_cost[PARTITION_SPLIT];
      best_rdc.dist = sum_subblock_dist;
      best_rdc.rdcost = RDCOST(x->rdmult, best_rdc.rate, best_rdc.dist);
      break;
    default:
      assert(0 && "invalid partition type.");
      aom_internal_error(cm->error, AOM_CODEC_ERROR, "Invalid partition type.");
  }
  // Note: it is necessary to restore context information.
  av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);

  if (bsize != cm->seq_params->sb_size) {
    encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
              pc_tree, NULL);
  }
  x->rdmult = orig_rdmult;

  return best_rdc;
}

static void prepare_sb_features_before_search(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row,
    int mi_col, const BLOCK_SIZE bsize, aom_partition_features_t *features) {
  av1_collect_motion_search_features_sb(cpi, td, tile_data, mi_row, mi_col,
                                        bsize, features);
  collect_tpl_stats_sb(cpi, bsize, mi_row, mi_col, features);
}

static void update_partition_stats(const RD_STATS *const this_rdcost,
                                   aom_partition_stats_t *stats) {
  stats->rate = this_rdcost->rate;
  stats->dist = this_rdcost->dist;
  stats->rdcost = this_rdcost->rdcost;
}

static void build_pc_tree_from_part_decision(
    const aom_partition_decision_t *partition_decision,
    const BLOCK_SIZE this_bsize, PC_TREE *pc_tree,
    struct aom_internal_error_info *error_info) {
  BLOCK_SIZE bsize = this_bsize;
  int num_nodes = partition_decision->num_nodes;
  PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
  int last_idx = 1;
  int q_idx = 0;
  tree_node_queue[q_idx] = pc_tree;
  while (num_nodes > 0) {
    const int partitioning = partition_decision->partition_decision[q_idx];
    assert(partitioning >= PARTITION_NONE &&
           partitioning < EXT_PARTITION_TYPES);
    PC_TREE *node = tree_node_queue[q_idx];
    if (node != NULL) {
      node->partitioning = partitioning;
      bsize = node->block_size;
    }
    if (partitioning == PARTITION_SPLIT) {
      const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
      for (int i = 0; i < 4; ++i) {
        if (node != NULL) {  // Suppress warning
          node->split[i] = av1_alloc_pc_tree_node(subsize);
          if (!node->split[i])
            aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
                               "Failed to allocate PC_TREE");
          node->split[i]->index = i;
          tree_node_queue[last_idx] = node->split[i];
          ++last_idx;
        }
      }
    }
    --num_nodes;
    ++q_idx;
  }
}

// The ML model needs to provide the whole decision tree for the superblock.
static bool ml_partition_search_whole_tree(AV1_COMP *const cpi, ThreadData *td,
                                           TileDataEnc *tile_data,
                                           TokenExtra **tp,
                                           SIMPLE_MOTION_DATA_TREE *sms_root,
                                           int mi_row, int mi_col,
                                           const BLOCK_SIZE bsize) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCK *const x = &td->mb;
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
  struct aom_internal_error_info *error_info = x->e_mbd.error_info;
  aom_partition_features_t features;
  prepare_sb_features_before_search(cpi, td, tile_data, mi_row, mi_col, bsize,
                                    &features);
  features.mi_row = mi_row;
  features.mi_col = mi_col;
  features.frame_width = cpi->frame_info.frame_width;
  features.frame_height = cpi->frame_info.frame_height;
  features.block_size = bsize;
  av1_ext_part_send_features(ext_part_controller, &features);

  // rd mode search (dry run) for a valid partition decision from the ml model.
  aom_partition_decision_t partition_decision;
  do {
    const bool valid_decision = av1_ext_part_get_partition_decision(
        ext_part_controller, &partition_decision);
    if (!valid_decision) return false;

    // First, let's take the easy approach.
    // We require that the ml model has to provide partition decisions for the
    // whole superblock.
    td->pc_root = av1_alloc_pc_tree_node(bsize);
    if (!td->pc_root)
      aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
                         "Failed to allocate PC_TREE");
    build_pc_tree_from_part_decision(&partition_decision, bsize, td->pc_root,
                                     error_info);

    const RD_STATS this_rdcost = rd_search_for_fixed_partition(
        cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root);
    aom_partition_stats_t stats;
    update_partition_stats(&this_rdcost, &stats);
    av1_ext_part_send_partition_stats(ext_part_controller, &stats);
    if (!partition_decision.is_final_decision) {
      av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
                                 cpi->sf.part_sf.partition_search_type);
      td->pc_root = NULL;
    }
  } while (!partition_decision.is_final_decision);

  // Encode with the selected mode and partition.
  set_cb_offsets(x->cb_offset, 0, 0);
  encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
            td->pc_root, NULL);
  av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
                             cpi->sf.part_sf.partition_search_type);
  td->pc_root = NULL;

  return true;
}

// Use a bitmask to represent the valid partition types for the current
// block. "1" represents the corresponding partition type is vaild.
// The least significant bit represents "PARTITION_NONE", the
// largest significant bit represents "PARTITION_VERT_4", follow
// the enum order for PARTITION_TYPE in "enums.h"
static int get_valid_partition_types(
    const AV1_COMP *const cpi,
    const PartitionSearchState *const part_search_state,
    const BLOCK_SIZE bsize) {
  const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
  const PartitionBlkParams blk_params = part_search_state->part_blk_params;
  int valid_types = 0;
  // PARTITION_NONE
  valid_types |= (part_search_state->partition_none_allowed << 0);
  // PARTITION_HORZ
  valid_types |= (part_search_state->partition_rect_allowed[HORZ] << 1);
  // PARTITION_VERT
  valid_types |= (part_search_state->partition_rect_allowed[VERT] << 2);
  // PARTITION_SPLIT
  valid_types |= (part_search_state->do_square_split << 3);
  // PARTITION_HORZ_A
  const int ext_partition_allowed = part_search_state->do_rectangular_split &&
                                    av1_blk_has_rows_and_cols(&blk_params);
  const int horzab_partition_allowed =
      ext_partition_allowed && part_cfg->enable_ab_partitions &&
      part_search_state->partition_rect_allowed[HORZ];
  valid_types |= (horzab_partition_allowed << 4);
  // PARTITION_HORZ_B
  valid_types |= (horzab_partition_allowed << 5);
  // PARTITION_VERT_A
  const int vertab_partition_allowed =
      ext_partition_allowed && part_cfg->enable_ab_partitions &&
      part_search_state->partition_rect_allowed[VERT];
  valid_types |= (vertab_partition_allowed << 6);
  // PARTITION_VERT_B
  valid_types |= (vertab_partition_allowed << 7);
  // PARTITION_HORZ_4
  const int partition4_allowed = part_cfg->enable_1to4_partitions &&
                                 ext_partition_allowed &&
                                 bsize != BLOCK_128X128;
  const int horz4_allowed =
      partition4_allowed && part_search_state->partition_rect_allowed[HORZ] &&
      get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ_4),
                           part_search_state->ss_x,
                           part_search_state->ss_y) != BLOCK_INVALID;
  valid_types |= (horz4_allowed << 8);
  // PARTITION_VERT_4
  const int vert4_allowed =
      partition4_allowed && part_search_state->partition_rect_allowed[HORZ] &&
      get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT_4),
                           part_search_state->ss_x,
                           part_search_state->ss_y) != BLOCK_INVALID;
  valid_types |= (vert4_allowed << 9);

  return valid_types;
}

static void prepare_tpl_stats_block(const AV1_COMP *const cpi,
                                    const BLOCK_SIZE bsize, const int mi_row,
                                    const int mi_col, int64_t *intra_cost,
                                    int64_t *inter_cost, int64_t *mc_dep_cost) {
  const AV1_COMMON *const cm = &cpi->common;
  GF_GROUP *gf_group = &cpi->ppi->gf_group;
  if (gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE ||
      gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) {
    return;
  }

  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cpi->gf_frame_index];
  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
  // If tpl stats is not established, early return
  if (!tpl_data->ready || gf_group->max_layer_depth_allowed == 0) {
    return;
  }

  const int tpl_stride = tpl_frame->stride;
  const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
  const int mi_width =
      AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
  const int mi_height =
      AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);

  int64_t sum_intra_cost = 0;
  int64_t sum_inter_cost = 0;
  int64_t sum_mc_dep_cost = 0;
  for (int row = 0; row < mi_height; row += step) {
    for (int col = 0; col < mi_width; col += step) {
      TplDepStats *this_stats =
          &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
                                     tpl_data->tpl_stats_block_mis_log2)];
      sum_intra_cost += this_stats->intra_cost;
      sum_inter_cost += this_stats->inter_cost;
      const int64_t mc_dep_delta =
          RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
                 this_stats->mc_dep_dist);
      sum_mc_dep_cost += mc_dep_delta;
    }
  }

  *intra_cost = sum_intra_cost;
  *inter_cost = sum_inter_cost;
  *mc_dep_cost = sum_mc_dep_cost;
}

static bool recursive_partition(AV1_COMP *const cpi, ThreadData *td,
                                TileDataEnc *tile_data, TokenExtra **tp,
                                SIMPLE_MOTION_DATA_TREE *sms_root,
                                PC_TREE *pc_tree, int mi_row, int mi_col,
                                const BLOCK_SIZE bsize, RD_STATS *this_rdcost) {
  const AV1_COMMON *const cm = &cpi->common;
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) {
    return false;
  }
  aom_partition_decision_t partition_decision;
  do {
    PartitionSearchState part_search_state;
    // Initialization of state variables used in partition search.
    // TODO(chengchen): check if there is hidden conditions that don't allow
    // all possible partition types.
    init_partition_search_state_params(x, cpi, &part_search_state, mi_row,
                                       mi_col, bsize);
    // Override partition costs at the edges of the frame in the same
    // way as in read_partition (see decodeframe.c).
    PartitionBlkParams blk_params = part_search_state.part_blk_params;
    if (!av1_blk_has_rows_and_cols(&blk_params))
      set_partition_cost_for_edge_blk(cm, &part_search_state);
    const int orig_rdmult = x->rdmult;
    setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
    const int valid_partition_types =
        get_valid_partition_types(cpi, &part_search_state, bsize);
    const FRAME_UPDATE_TYPE update_type =
        get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
    const int qindex = av1_get_qindex(&cm->seg, xd->mi[0]->segment_id,
                                      cm->quant_params.base_qindex);
    // RD multiplier
    const int rdmult = x->rdmult;
    // pyramid level
    const int pyramid_level =
        cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index];
    x->rdmult = orig_rdmult;
    // Neighbor information
    const int has_above = !!xd->above_mbmi;
    const int has_left = !!xd->left_mbmi;
    const BLOCK_SIZE above_bsize =
        has_above ? xd->above_mbmi->bsize : BLOCK_INVALID;
    const BLOCK_SIZE left_bsize =
        has_left ? xd->left_mbmi->bsize : BLOCK_INVALID;
    const int above_block_width =
        above_bsize == BLOCK_INVALID ? -1 : block_size_wide[above_bsize];
    const int above_block_height =
        above_bsize == BLOCK_INVALID ? -1 : block_size_high[above_bsize];
    const int left_block_width =
        left_bsize == BLOCK_INVALID ? -1 : block_size_wide[left_bsize];
    const int left_block_height =
        left_bsize == BLOCK_INVALID ? -1 : block_size_high[left_bsize];
    // Prepare simple motion search stats as features
    unsigned int block_sse = -1;
    unsigned int block_var = -1;
    unsigned int sub_block_sse[4] = { -1, -1, -1, -1 };
    unsigned int sub_block_var[4] = { -1, -1, -1, -1 };
    unsigned int horz_block_sse[2] = { -1, -1 };
    unsigned int horz_block_var[2] = { -1, -1 };
    unsigned int vert_block_sse[2] = { -1, -1 };
    unsigned int vert_block_var[2] = { -1, -1 };
    av1_prepare_motion_search_features_block(
        cpi, td, tile_data, mi_row, mi_col, bsize, valid_partition_types,
        &block_sse, &block_var, sub_block_sse, sub_block_var, horz_block_sse,
        horz_block_var, vert_block_sse, vert_block_var);
    // Prepare tpl stats for the current block as features
    int64_t tpl_intra_cost = -1;
    int64_t tpl_inter_cost = -1;
    int64_t tpl_mc_dep_cost = -1;
    prepare_tpl_stats_block(cpi, bsize, mi_row, mi_col, &tpl_intra_cost,
                            &tpl_inter_cost, &tpl_mc_dep_cost);

    aom_partition_features_t features;
    features.mi_row = mi_row;
    features.mi_col = mi_col;
    features.frame_width = cpi->frame_info.frame_width;
    features.frame_height = cpi->frame_info.frame_height;
    features.block_size = bsize;
    features.valid_partition_types = valid_partition_types;
    features.update_type = update_type;
    features.qindex = qindex;
    features.rdmult = rdmult;
    features.pyramid_level = pyramid_level;
    features.has_above_block = has_above;
    features.above_block_width = above_block_width;
    features.above_block_height = above_block_height;
    features.has_left_block = has_left;
    features.left_block_width = left_block_width;
    features.left_block_height = left_block_height;
    features.block_sse = block_sse;
    features.block_var = block_var;
    for (int i = 0; i < 4; ++i) {
      features.sub_block_sse[i] = sub_block_sse[i];
      features.sub_block_var[i] = sub_block_var[i];
    }
    for (int i = 0; i < 2; ++i) {
      features.horz_block_sse[i] = horz_block_sse[i];
      features.horz_block_var[i] = horz_block_var[i];
      features.vert_block_sse[i] = vert_block_sse[i];
      features.vert_block_var[i] = vert_block_var[i];
    }
    features.tpl_intra_cost = tpl_intra_cost;
    features.tpl_inter_cost = tpl_inter_cost;
    features.tpl_mc_dep_cost = tpl_mc_dep_cost;
    av1_ext_part_send_features(ext_part_controller, &features);
    const bool valid_decision = av1_ext_part_get_partition_decision(
        ext_part_controller, &partition_decision);
    if (!valid_decision) return false;
    pc_tree->partitioning = partition_decision.current_decision;

    av1_init_rd_stats(this_rdcost);
    if (partition_decision.current_decision == PARTITION_SPLIT) {
      assert(block_size_wide[bsize] >= 8 && block_size_high[bsize] >= 8);
      const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
      RD_STATS split_rdc[SUB_PARTITIONS_SPLIT];
      for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
        av1_init_rd_stats(&split_rdc[i]);
        if (pc_tree->split[i] == NULL)
          pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
        if (!pc_tree->split[i])
          aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                             "Failed to allocate PC_TREE");
        pc_tree->split[i]->index = i;
      }
      const int orig_rdmult_tmp = x->rdmult;
      setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
      // TODO(chengchen): check boundary conditions
      // top-left
      recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[0],
                          mi_row, mi_col, subsize, &split_rdc[0]);
      // top-right
      recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[1],
                          mi_row, mi_col + mi_size_wide[subsize], subsize,
                          &split_rdc[1]);
      // bottom-left
      recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[2],
                          mi_row + mi_size_high[subsize], mi_col, subsize,
                          &split_rdc[2]);
      // bottom_right
      recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[3],
                          mi_row + mi_size_high[subsize],
                          mi_col + mi_size_wide[subsize], subsize,
                          &split_rdc[3]);
      this_rdcost->rate += part_search_state.partition_cost[PARTITION_SPLIT];
      // problem is here, the rdmult is different from the rdmult in sub block.
      for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
        this_rdcost->rate += split_rdc[i].rate;
        this_rdcost->dist += split_rdc[i].dist;
        av1_rd_cost_update(x->rdmult, this_rdcost);
      }
      x->rdmult = orig_rdmult_tmp;
    } else {
      *this_rdcost = rd_search_for_fixed_partition(
          cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, pc_tree);
    }

    aom_partition_stats_t stats;
    update_partition_stats(this_rdcost, &stats);
    av1_ext_part_send_partition_stats(ext_part_controller, &stats);
    if (!partition_decision.is_final_decision) {
      if (partition_decision.current_decision == PARTITION_SPLIT) {
        for (int i = 0; i < 4; ++i) {
          if (pc_tree->split[i] != NULL) {
            av1_free_pc_tree_recursive(pc_tree->split[i], av1_num_planes(cm), 0,
                                       0,
                                       cpi->sf.part_sf.partition_search_type);
            pc_tree->split[i] = NULL;
          }
        }
      }
    }
  } while (!partition_decision.is_final_decision);

  return true;
}

// The ML model only needs to make decisions for the current block each time.
static bool ml_partition_search_partial(AV1_COMP *const cpi, ThreadData *td,
                                        TileDataEnc *tile_data, TokenExtra **tp,
                                        SIMPLE_MOTION_DATA_TREE *sms_root,
                                        int mi_row, int mi_col,
                                        const BLOCK_SIZE bsize) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCK *const x = &td->mb;
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
  aom_partition_features_t features;
  prepare_sb_features_before_search(cpi, td, tile_data, mi_row, mi_col, bsize,
                                    &features);
  features.mi_row = mi_row;
  features.mi_col = mi_col;
  features.frame_width = cpi->frame_info.frame_width;
  features.frame_height = cpi->frame_info.frame_height;
  features.block_size = bsize;
  av1_ext_part_send_features(ext_part_controller, &features);
  td->pc_root = av1_alloc_pc_tree_node(bsize);
  if (!td->pc_root)
    aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
                       "Failed to allocate PC_TREE");

  RD_STATS rdcost;
  const bool valid_partition =
      recursive_partition(cpi, td, tile_data, tp, sms_root, td->pc_root, mi_row,
                          mi_col, bsize, &rdcost);
  if (!valid_partition) {
    return false;
  }

  // Encode with the selected mode and partition.
  set_cb_offsets(x->cb_offset, 0, 0);
  encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
            td->pc_root, NULL);
  av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
                             cpi->sf.part_sf.partition_search_type);
  td->pc_root = NULL;

  return true;
}

bool av1_rd_partition_search(AV1_COMP *const cpi, ThreadData *td,
                             TileDataEnc *tile_data, TokenExtra **tp,
                             SIMPLE_MOTION_DATA_TREE *sms_root, int mi_row,
                             int mi_col, const BLOCK_SIZE bsize,
                             RD_STATS *best_rd_cost) {
  AV1_COMMON *const cm = &cpi->common;
  if (cpi->ext_part_controller.ready) {
    bool valid_search = true;
    const aom_ext_part_decision_mode_t decision_mode =
        av1_get_ext_part_decision_mode(&cpi->ext_part_controller);
    if (decision_mode == AOM_EXT_PART_WHOLE_TREE) {
      valid_search = ml_partition_search_whole_tree(
          cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize);
    } else if (decision_mode == AOM_EXT_PART_RECURSIVE) {
      valid_search = ml_partition_search_partial(
          cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize);
    } else {
      assert(0 && "Unknown decision mode.");
      return false;
    }
    if (!valid_search) {
      aom_internal_error(
          cm->error, AOM_CODEC_ERROR,
          "Invalid search from ML model, partition search failed");
    }
    return true;
  }

  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  int best_idx = 0;
  int64_t min_rdcost = INT64_MAX;
  int num_configs;
  int i = 0;
  do {
    td->pc_root = av1_alloc_pc_tree_node(bsize);
    if (!td->pc_root)
      aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                         "Failed to allocate PC_TREE");
    num_configs = read_partition_tree(cpi, td->pc_root, xd->error_info, i);
    if (num_configs <= 0) {
      av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
                                 cpi->sf.part_sf.partition_search_type);
      td->pc_root = NULL;
      aom_internal_error(xd->error_info, AOM_CODEC_ERROR, "Invalid configs.");
    }
    verify_write_partition_tree(cpi, td->pc_root, bsize, i, mi_row, mi_col);
    if (i == 0) {
      AOM_CHECK_MEM_ERROR(xd->error_info, x->rdcost,
                          aom_calloc(num_configs, sizeof(*x->rdcost)));
    }
    // Encode the block with the given partition tree. Get rdcost and encoding
    // time.
    x->rdcost[i] = rd_search_for_fixed_partition(
        cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root);

    if (x->rdcost[i].rdcost < min_rdcost) {
      min_rdcost = x->rdcost[i].rdcost;
      best_idx = i;
      *best_rd_cost = x->rdcost[i];
    }
    av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
                               cpi->sf.part_sf.partition_search_type);
    td->pc_root = NULL;
    ++i;
  } while (i < num_configs);

  aom_free(x->rdcost);
  x->rdcost = NULL;
  // Encode with the partition configuration with the smallest rdcost.
  td->pc_root = av1_alloc_pc_tree_node(bsize);
  if (!td->pc_root)
    aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                       "Failed to allocate PC_TREE");
  read_partition_tree(cpi, td->pc_root, xd->error_info, best_idx);
  rd_search_for_fixed_partition(cpi, td, tile_data, tp, sms_root, mi_row,
                                mi_col, bsize, td->pc_root);
  set_cb_offsets(x->cb_offset, 0, 0);
  encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
            td->pc_root, NULL);
  av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
                             cpi->sf.part_sf.partition_search_type);
  td->pc_root = NULL;
  ++cpi->sb_counter;

  return true;
}
#endif  // CONFIG_PARTITION_SEARCH_ORDER

static inline bool should_do_dry_run_encode_for_current_block(
    BLOCK_SIZE sb_size, BLOCK_SIZE max_partition_size, int curr_block_index,
    BLOCK_SIZE bsize) {
  if (bsize > max_partition_size) return false;

  // Enable the reconstruction with dry-run for the 4th sub-block only if its
  // parent block's reconstruction with dry-run is skipped. If
  // max_partition_size is the same as immediate split of superblock, then avoid
  // reconstruction of the 4th sub-block, as this data is not consumed.
  if (curr_block_index != 3) return true;

  const BLOCK_SIZE sub_sb_size =
      get_partition_subsize(sb_size, PARTITION_SPLIT);
  return bsize == max_partition_size && sub_sb_size != max_partition_size;
}

static void log_sub_block_var(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs,
                              double *var_min, double *var_max) {
  // This functions returns a the minimum and maximum log variances for 4x4
  // sub blocks in the current block.

  const MACROBLOCKD *const xd = &x->e_mbd;
  const int is_hbd = is_cur_buf_hbd(xd);
  const int right_overflow =
      (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0;
  const int bottom_overflow =
      (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0;
  const int bw = MI_SIZE * mi_size_wide[bs] - right_overflow;
  const int bh = MI_SIZE * mi_size_high[bs] - bottom_overflow;

  // Initialize minimum variance to a large value and maximum variance to 0.
  double min_var_4x4 = (double)INT_MAX;
  double max_var_4x4 = 0.0;

  for (int i = 0; i < bh; i += MI_SIZE) {
    for (int j = 0; j < bw; j += MI_SIZE) {
      int var;
      // Calculate the 4x4 sub-block variance.
      var = av1_calc_normalized_variance(
          cpi->ppi->fn_ptr[BLOCK_4X4].vf,
          x->plane[0].src.buf + (i * x->plane[0].src.stride) + j,
          x->plane[0].src.stride, is_hbd);

      // Record min and max for over-arching block
      min_var_4x4 = AOMMIN(min_var_4x4, var);
      max_var_4x4 = AOMMAX(max_var_4x4, var);
    }
  }
  *var_min = log1p(min_var_4x4 / 16.0);
  *var_max = log1p(max_var_4x4 / 16.0);
}

static inline void set_sms_tree_partitioning(SIMPLE_MOTION_DATA_TREE *sms_tree,
                                             PARTITION_TYPE partition) {
  if (sms_tree == NULL) return;
  sms_tree->partitioning = partition;
}

/*!\brief AV1 block partition search (full search).
*
* \ingroup partition_search
* \callgraph
* Searches for the best partition pattern for a block based on the
* rate-distortion cost, and returns a bool value to indicate whether a valid
* partition pattern is found. The partition can recursively go down to the
* smallest block size.
*
* \param[in]    cpi                Top-level encoder structure
* \param[in]    td                 Pointer to thread data
* \param[in]    tile_data          Pointer to struct holding adaptive
data/contexts/models for the tile during
encoding
* \param[in]    tp                 Pointer to the starting token
* \param[in]    mi_row             Row coordinate of the block in a step size
of MI_SIZE
* \param[in]    mi_col             Column coordinate of the block in a step
size of MI_SIZE
* \param[in]    bsize              Current block size
* \param[in]    rd_cost            Pointer to the final rd cost of the block
* \param[in]    best_rdc           Upper bound of rd cost of a valid partition
* \param[in]    pc_tree            Pointer to the PC_TREE node storing the
picked partitions and mode info for the
current block
* \param[in]    sms_tree           Pointer to struct holding simple motion
search data for the current block
* \param[in]    none_rd            Pointer to the rd cost in the case of not
splitting the current block
* \param[in]    multi_pass_mode    SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS
* \param[in]    rect_part_win_info Pointer to struct storing whether horz/vert
partition outperforms previously tested
partitions
*
* \return A bool value is returned indicating if a valid partition is found.
* The pc_tree struct is modified to store the picked partition and modes.
* The rd_cost struct is also updated with the RD stats corresponding to the
* best partition found.
*/
bool av1_rd_pick_partition(AV1_COMP *const cpi, ThreadData *td,
                           TileDataEnc *tile_data, TokenExtra **tp, int mi_row,
                           int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost,
                           RD_STATS best_rdc, PC_TREE *pc_tree,
                           SIMPLE_MOTION_DATA_TREE *sms_tree, int64_t *none_rd,
                           SB_MULTI_PASS_MODE multi_pass_mode,
                           RD_RECT_PART_WIN_INFO *rect_part_win_info) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  TileInfo *const tile_info = &tile_data->tile_info;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
  const TokenExtra *const tp_orig = *tp;
  PartitionSearchState part_search_state;

  // Initialization of state variables used in partition search.
  init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col,
                                     bsize);
  PartitionBlkParams blk_params = part_search_state.part_blk_params;

  set_sms_tree_partitioning(sms_tree, PARTITION_NONE);
  if (best_rdc.rdcost < 0) {
    av1_invalid_rd_stats(rd_cost);
    return part_search_state.found_best_partition;
  }
  if (bsize == cm->seq_params->sb_size) x->must_find_valid_partition = 0;

  // Override skipping rectangular partition operations for edge blocks.
  if (none_rd) *none_rd = 0;
  (void)*tp_orig;

#if CONFIG_COLLECT_PARTITION_STATS
  // Stats at the current quad tree
  PartitionTimingStats *part_timing_stats =
      &part_search_state.part_timing_stats;
  // Stats aggregated at frame level
  FramePartitionTimingStats *fr_part_timing_stats = &cpi->partition_stats;
#endif  // CONFIG_COLLECT_PARTITION_STATS

  // Override partition costs at the edges of the frame in the same
  // way as in read_partition (see decodeframe.c).
  if (!av1_blk_has_rows_and_cols(&blk_params))
    set_partition_cost_for_edge_blk(cm, &part_search_state);

  // Disable rectangular partitions for inner blocks when the current block is
  // forced to only use square partitions.
  if (bsize > cpi->sf.part_sf.use_square_partition_only_threshold) {
    part_search_state.partition_rect_allowed[HORZ] &= !blk_params.has_rows;
    part_search_state.partition_rect_allowed[VERT] &= !blk_params.has_cols;
  }

#ifndef NDEBUG
  // Nothing should rely on the default value of this array (which is just
  // leftover from encoding the previous block. Setting it to fixed pattern
  // when debugging.
  // bit 0, 1, 2 are blk_skip of each plane
  // bit 4, 5, 6 are initialization checking of each plane
  memset(x->txfm_search_info.blk_skip, 0x77,
         sizeof(x->txfm_search_info.blk_skip));
#endif  // NDEBUG

  assert(mi_size_wide[bsize] == mi_size_high[bsize]);

  // Set buffers and offsets.
  av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);

  if (cpi->oxcf.mode == ALLINTRA) {
    if (bsize == cm->seq_params->sb_size) {
      double var_min, var_max;
      log_sub_block_var(cpi, x, bsize, &var_min, &var_max);

      x->intra_sb_rdmult_modifier = 128;
      if ((var_min < 2.0) && (var_max > 4.0)) {
        if ((var_max - var_min) > 8.0) {
          x->intra_sb_rdmult_modifier -= 48;
        } else {
          x->intra_sb_rdmult_modifier -= (int)((var_max - var_min) * 6);
        }
      }
    }
  }

  // Save rdmult before it might be changed, so it can be restored later.
  const int orig_rdmult = x->rdmult;
  setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);

  // Apply simple motion search for the entire super block with fixed block
  // size, e.g., 16x16, to collect features and write to files for the
  // external ML model.
  // TODO(chengchen): reduce motion search. This function is similar to
  // av1_get_max_min_partition_features().
  if (COLLECT_MOTION_SEARCH_FEATURE_SB && !frame_is_intra_only(cm) &&
      bsize == cm->seq_params->sb_size) {
    av1_collect_motion_search_features_sb(cpi, td, tile_data, mi_row, mi_col,
                                          bsize, /*features=*/NULL);
    collect_tpl_stats_sb(cpi, bsize, mi_row, mi_col, /*features=*/NULL);
  }

  // Update rd cost of the bound using the current multiplier.
  av1_rd_cost_update(x->rdmult, &best_rdc);

  if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
    x->mb_energy = av1_log_block_var(cpi, x, bsize);

  // Set the context.
  xd->above_txfm_context =
      cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
  av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, av1_prune_partitions_time);
#endif
  // Pruning: before searching any partition type, using source and simple
  // motion search results to prune out unlikely partitions.
  av1_prune_partitions_before_search(cpi, x, sms_tree, &part_search_state);

  // Pruning: eliminating partition types leading to coding block sizes outside
  // the min and max bsize limitations set from the encoder.
  av1_prune_partitions_by_max_min_bsize(&x->sb_enc, &part_search_state);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, av1_prune_partitions_time);
#endif

  // Partition search
BEGIN_PARTITION_SEARCH:
  // If a valid partition is required, usually when the first round cannot find
  // a valid one under the cost limit after pruning, reset the limitations on
  // partition types and intra cnn output.
  if (x->must_find_valid_partition) {
    reset_part_limitations(cpi, &part_search_state);
    av1_prune_partitions_by_max_min_bsize(&x->sb_enc, &part_search_state);
    // Invalidate intra cnn output for key frames.
    if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) {
      part_search_state.intra_part_info->quad_tree_idx = 0;
      part_search_state.intra_part_info->cnn_output_valid = 0;
    }
  }
  // Partition block source pixel variance.
  unsigned int pb_source_variance = UINT_MAX;

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, none_partition_search_time);
#endif

  if (cpi->oxcf.mode == ALLINTRA) {
    const bool bsize_at_least_16x16 = (bsize >= BLOCK_16X16);
    const bool prune_rect_part_using_4x4_var_deviation =
        (cpi->sf.part_sf.prune_rect_part_using_4x4_var_deviation &&
         !x->must_find_valid_partition);

    if (bsize_at_least_16x16 || prune_rect_part_using_4x4_var_deviation) {
      double var_min, var_max;
      log_sub_block_var(cpi, x, bsize, &var_min, &var_max);

      // Further pruning or in some cases reverse pruning when allintra is set.
      // This code helps visual and in some cases metrics quality where the
      // current block comprises at least one very low variance sub-block and at
      // least one where the variance is much higher.
      //
      // The idea is that in such cases there is danger of ringing and other
      // visual artifacts from a high variance feature such as an edge into a
      // very low variance region.
      //
      // The approach taken is to force break down / split to a smaller block
      // size to try and separate out the low variance and well predicted blocks
      // from the more complex ones and to prevent propagation of ringing over a
      // large region.
      if (bsize_at_least_16x16 && (var_min < 0.272) &&
          ((var_max - var_min) > 3.0)) {
        part_search_state.partition_none_allowed = 0;
        part_search_state.terminate_partition_search = 0;
        part_search_state.do_square_split = 1;
      } else if (prune_rect_part_using_4x4_var_deviation &&
                 (var_max - var_min < 3.0)) {
        // Prune rectangular partitions if the variance deviation of 4x4
        // sub-blocks within the block is less than a threshold (derived
        // empirically).
        part_search_state.do_rectangular_split = 0;
      }
    }
  }

  // PARTITION_NONE search stage.
  int64_t part_none_rd = INT64_MAX;
  none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx,
                        &part_search_state, &best_rdc, &pb_source_variance,
                        none_rd, &part_none_rd);

#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, none_partition_search_time);
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, split_partition_search_time);
#endif
  // PARTITION_SPLIT search stage.
  int64_t part_split_rd = INT64_MAX;
  split_partition_search(cpi, td, tile_data, tp, x, pc_tree, sms_tree, &x_ctx,
                         &part_search_state, &best_rdc, multi_pass_mode,
                         &part_split_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, split_partition_search_time);
#endif
  // Terminate partition search for child partition,
  // when NONE and SPLIT partition rd_costs are INT64_MAX.
  if (cpi->sf.part_sf.early_term_after_none_split &&
      part_none_rd == INT64_MAX && part_split_rd == INT64_MAX &&
      !x->must_find_valid_partition && (bsize != cm->seq_params->sb_size)) {
    part_search_state.terminate_partition_search = 1;
  }

  // Do not evaluate non-square partitions if NONE partition did not choose a
  // newmv mode and is skippable.
  if ((cpi->sf.part_sf.skip_non_sq_part_based_on_none >= 2) &&
      (pc_tree->none != NULL)) {
    if (x->qindex <= 200 && is_inter_mode(pc_tree->none->mic.mode) &&
        !have_newmv_in_inter_mode(pc_tree->none->mic.mode) &&
        pc_tree->none->skippable && !x->must_find_valid_partition &&
        bsize >= BLOCK_16X16)
      part_search_state.do_rectangular_split = 0;
  }

  // Prune partitions based on PARTITION_NONE and PARTITION_SPLIT.
  prune_partitions_after_split(cpi, x, sms_tree, &part_search_state, &best_rdc,
                               part_none_rd, part_split_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, rectangular_partition_search_time);
#endif
  // Rectangular partitions search stage.
  rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
                               &part_search_state, &best_rdc,
                               rect_part_win_info, HORZ, VERT);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, rectangular_partition_search_time);
#endif

  if (pb_source_variance == UINT_MAX) {
    av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
    pb_source_variance = av1_get_perpixel_variance_facade(
        cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
  }

  assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
                 !part_search_state.do_rectangular_split));

  const int prune_ext_part_state = prune_ext_part_none_skippable(
      pc_tree->none, x->must_find_valid_partition,
      cpi->sf.part_sf.skip_non_sq_part_based_on_none, bsize);

  const int ab_partition_allowed = allow_ab_partition_search(
      &part_search_state, &cpi->sf.part_sf, pc_tree->partitioning,
      x->must_find_valid_partition, prune_ext_part_state, best_rdc.rdcost);

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, ab_partitions_search_time);
#endif
  // AB partitions search stage.
  ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                       &part_search_state, &best_rdc, rect_part_win_info,
                       pb_source_variance, ab_partition_allowed, HORZ_A,
                       VERT_B);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, ab_partitions_search_time);
#endif

  // 4-way partitions search stage.
  int part4_search_allowed[NUM_PART4_TYPES] = { 1, 1 };
  // Prune 4-way partition search.
  prune_4_way_partition_search(cpi, x, pc_tree, &part_search_state, &best_rdc,
                               pb_source_variance, prune_ext_part_state,
                               part4_search_allowed);

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, rd_pick_4partition_time);
#endif
  // PARTITION_HORZ_4
  assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
                 !part4_search_allowed[HORZ4]));
  if (!part_search_state.terminate_partition_search &&
      part4_search_allowed[HORZ4]) {
    const int inc_step[NUM_PART4_TYPES] = { mi_size_high[blk_params.bsize] / 4,
                                            0 };
    // Evaluation of Horz4 partition type.
    rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                       pc_tree->horizontal4, &part_search_state, &best_rdc,
                       inc_step, PARTITION_HORZ_4);
  }

  // PARTITION_VERT_4
  assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
                 !part4_search_allowed[VERT4]));
  if (!part_search_state.terminate_partition_search &&
      part4_search_allowed[VERT4] && blk_params.has_cols) {
    const int inc_step[NUM_PART4_TYPES] = { 0, mi_size_wide[blk_params.bsize] /
                                                   4 };
    // Evaluation of Vert4 partition type.
    rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                       pc_tree->vertical4, &part_search_state, &best_rdc,
                       inc_step, PARTITION_VERT_4);
  }
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, rd_pick_4partition_time);
#endif

  if (bsize == cm->seq_params->sb_size &&
      !part_search_state.found_best_partition) {
    // Did not find a valid partition, go back and search again, with less
    // constraint on which partition types to search.
    x->must_find_valid_partition = 1;
#if CONFIG_COLLECT_PARTITION_STATS
    fr_part_timing_stats->partition_redo += 1;
#endif  // CONFIG_COLLECT_PARTITION_STATS
    goto BEGIN_PARTITION_SEARCH;
  }

  // Store the final rd cost
  *rd_cost = best_rdc;

  // Also record the best partition in simple motion data tree because it is
  // necessary for the related speed features.
  set_sms_tree_partitioning(sms_tree, pc_tree->partitioning);

#if CONFIG_COLLECT_PARTITION_STATS
  if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) {
    part_timing_stats->partition_decisions[pc_tree->partitioning] += 1;
  }

  // If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each
  // prediction block.
  print_partition_timing_stats_with_rdcost(
      part_timing_stats, mi_row, mi_col, bsize,
      cpi->ppi->gf_group.update_type[cpi->gf_frame_index],
      cm->current_frame.frame_number, &best_rdc, "part_timing.csv");
  const bool print_timing_stats = false;
  if (print_timing_stats) {
    print_partition_timing_stats(part_timing_stats, cm->show_frame,
                                 frame_is_intra_only(cm), bsize,
                                 "part_timing_data.csv");
  }
  // If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats for
  // the whole clip. So we need to pass the information upstream to the encoder.
  accumulate_partition_timing_stats(fr_part_timing_stats, part_timing_stats,
                                    bsize);
#endif  // CONFIG_COLLECT_PARTITION_STATS

  // Reset the PC_TREE deallocation flag.
  int pc_tree_dealloc = 0;

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, encode_sb_time);
#endif
  if (part_search_state.found_best_partition) {
    if (bsize == cm->seq_params->sb_size) {
      // Encode the superblock.
      const int emit_output = multi_pass_mode != SB_DRY_PASS;
      const RUN_TYPE run_type = emit_output ? OUTPUT_ENABLED : DRY_RUN_NORMAL;

      // Write partition tree to file. Not used by default.
      if (COLLECT_MOTION_SEARCH_FEATURE_SB) {
        write_partition_tree(cpi, pc_tree, bsize, mi_row, mi_col);
        ++cpi->sb_counter;
      }

      set_cb_offsets(x->cb_offset, 0, 0);
      encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, run_type, bsize,
                pc_tree, NULL);
      assert(pc_tree == td->pc_root);
      // Dealloc the whole PC_TREE after a superblock is done.
      av1_free_pc_tree_recursive(pc_tree, num_planes, 0, 0,
                                 cpi->sf.part_sf.partition_search_type);
      pc_tree = NULL;
      td->pc_root = NULL;
      pc_tree_dealloc = 1;
    } else if (should_do_dry_run_encode_for_current_block(
                   cm->seq_params->sb_size, x->sb_enc.max_partition_size,
                   pc_tree->index, bsize)) {
      // Encode the smaller blocks in DRY_RUN mode.
      encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
                pc_tree, NULL);
    }
  }
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, encode_sb_time);
#endif

  // If the tree still exists (non-superblock), dealloc most nodes, only keep
  // nodes for the best partition and PARTITION_NONE.
  if (pc_tree_dealloc == 0)
    av1_free_pc_tree_recursive(pc_tree, num_planes, 1, 1,
                               cpi->sf.part_sf.partition_search_type);

  if (bsize == cm->seq_params->sb_size) {
    assert(best_rdc.rate < INT_MAX);
    assert(best_rdc.dist < INT64_MAX);
  } else {
    assert(tp_orig == *tp);
  }

  // Restore the rd multiplier.
  x->rdmult = orig_rdmult;
  return part_search_state.found_best_partition;
}
#endif  // !CONFIG_REALTIME_ONLY

#undef COLLECT_MOTION_SEARCH_FEATURE_SB

#if CONFIG_RT_ML_PARTITIONING
#define FEATURES
#define LABELS
static int ml_predict_var_partitioning(AV1_COMP *cpi, MACROBLOCK *x,
                                       BLOCK_SIZE bsize, int mi_row,
                                       int mi_col) {
  AV1_COMMON *const cm = &cpi->common;
  const NN_CONFIG *nn_config = NULL;
  const float *means = NULL;
  const float *vars = NULL;
  switch (bsize) {
    case BLOCK_64X64:
      nn_config = &av1_var_part_nnconfig_64;
      means = av1_var_part_means_64;
      vars = av1_var_part_vars_64;
      break;
    case BLOCK_32X32:
      nn_config = &av1_var_part_nnconfig_32;
      means = av1_var_part_means_32;
      vars = av1_var_part_vars_32;
      break;
    case BLOCK_16X16:
      nn_config = &av1_var_part_nnconfig_16;
      means = av1_var_part_means_16;
      vars = av1_var_part_vars_16;
      break;
    case BLOCK_8X8:
    default: assert(0 && "Unexpected block size."); return -1;
  }

  if (!nn_config) return -1;

  {
    const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f;
    float features[FEATURES] = { 0.0f };
    const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0,
                                      cm->seq_params->bit_depth);
    int feature_idx = 0;
    float score[LABELS];

    features[feature_idx] =
        (log1pf((float)(dc_q * dc_q) / 256.0f) - means[feature_idx]) /
        sqrtf(vars[feature_idx]);
    feature_idx++;
    av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize);
    {
      const int bs = block_size_wide[bsize];
      const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
      const int sb_offset_row = 4 * (mi_row & 15);
      const int sb_offset_col = 4 * (mi_col & 15);
      const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
      const uint8_t *src = x->plane[0].src.buf;
      const int src_stride = x->plane[0].src.stride;
      const int pred_stride = 64;
      unsigned int sse;
      int i;
      // Variance of whole block.
      const unsigned int var =
          cpi->ppi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
      const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);

      features[feature_idx] =
          (log1pf((float)var) - means[feature_idx]) / sqrtf(vars[feature_idx]);
      feature_idx++;
      for (i = 0; i < 4; ++i) {
        const int x_idx = (i & 1) * bs / 2;
        const int y_idx = (i >> 1) * bs / 2;
        const int src_offset = y_idx * src_stride + x_idx;
        const int pred_offset = y_idx * pred_stride + x_idx;
        // Variance of quarter block.
        const unsigned int sub_var =
            cpi->ppi->fn_ptr[subsize].vf(src + src_offset, src_stride,
                                         pred + pred_offset, pred_stride, &sse);
        const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
        features[feature_idx] =
            (var_ratio - means[feature_idx]) / sqrtf(vars[feature_idx]);
        feature_idx++;
      }
    }
    //    for (int i = 0; i<FEATURES; i++)
    //      printf("F_%d, %f; ", i, features[i]);
    assert(feature_idx == FEATURES);
    av1_nn_predict(features, nn_config, 1, score);
    //    printf("Score %f, thr %f ", (float)score[0], thresh);
    if (score[0] > thresh) return PARTITION_SPLIT;
    if (score[0] < -thresh) return PARTITION_NONE;
    return -1;
  }
}
#undef FEATURES
#undef LABELS

// Uncomment for collecting data for ML-based partitioning
// #define _COLLECT_GROUND_TRUTH_

#ifdef _COLLECT_GROUND_TRUTH_
static int store_partition_data(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
                                int mi_row, int mi_col, PARTITION_TYPE part) {
  AV1_COMMON *const cm = &cpi->common;
  char fname[128];
  switch (bsize) {
    case BLOCK_64X64: sprintf(fname, "data_64x64.txt"); break;
    case BLOCK_32X32: sprintf(fname, "data_32x32.txt"); break;
    case BLOCK_16X16: sprintf(fname, "data_16x16.txt"); break;
    case BLOCK_8X8: sprintf(fname, "data_8x8.txt"); break;
    default: assert(0 && "Unexpected block size."); return -1;
  }

  float features[6];  // DC_Q, VAR, VAR_RATIO-0..3

  FILE *f = fopen(fname, "a");

  {
    const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0,
                                      cm->seq_params->bit_depth);
    int feature_idx = 0;

    features[feature_idx++] = log1pf((float)(dc_q * dc_q) / 256.0f);
    av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize);
    {
      const int bs = block_size_wide[bsize];
      const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
      const int sb_offset_row = 4 * (mi_row & 15);
      const int sb_offset_col = 4 * (mi_col & 15);
      const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
      const uint8_t *src = x->plane[0].src.buf;
      const int src_stride = x->plane[0].src.stride;
      const int pred_stride = 64;
      unsigned int sse;
      int i;
      // Variance of whole block.
      /*
                if (bs == 8)
                {
                  int r, c;
                  printf("%d %d\n", mi_row, mi_col);
                  for (r = 0; r < bs; ++r) {
                    for (c = 0; c < bs; ++c) {
                      printf("%3d ",
                             src[r * src_stride + c] - pred[64 * r + c]);
                    }
                    printf("\n");
                  }
                  printf("\n");
                }
      */
      const unsigned int var =
          cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
      const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);

      features[feature_idx++] = log1pf((float)var);

      fprintf(f, "%f,%f,", features[0], features[1]);
      for (i = 0; i < 4; ++i) {
        const int x_idx = (i & 1) * bs / 2;
        const int y_idx = (i >> 1) * bs / 2;
        const int src_offset = y_idx * src_stride + x_idx;
        const int pred_offset = y_idx * pred_stride + x_idx;
        // Variance of quarter block.
        const unsigned int sub_var =
            cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
                                    pred + pred_offset, pred_stride, &sse);
        const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
        features[feature_idx++] = var_ratio;
        fprintf(f, "%f,", var_ratio);
      }

      fprintf(f, "%d\n", part == PARTITION_NONE ? 0 : 1);
    }

    fclose(f);
    return -1;
  }
}
#endif

static void duplicate_mode_info_in_sb(AV1_COMMON *cm, MACROBLOCKD *xd,
                                      int mi_row, int mi_col,
                                      BLOCK_SIZE bsize) {
  const int block_width =
      AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
  const int block_height =
      AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
  const int mi_stride = xd->mi_stride;
  MB_MODE_INFO *const src_mi = xd->mi[0];
  int i, j;

  for (j = 0; j < block_height; ++j)
    for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi;
}

static inline void copy_mbmi_ext_frame_to_mbmi_ext(
    MB_MODE_INFO_EXT *const mbmi_ext,
    const MB_MODE_INFO_EXT_FRAME *mbmi_ext_best, uint8_t ref_frame_type) {
  memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
         sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
  memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
         sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
  mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
  mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
  memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
         sizeof(mbmi_ext->global_mvs));
}

static void fill_mode_info_sb(AV1_COMP *cpi, MACROBLOCK *x, int mi_row,
                              int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  int hbs = mi_size_wide[bsize] >> 1;
  PARTITION_TYPE partition = pc_tree->partitioning;
  BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);

  assert(bsize >= BLOCK_8X8);

  if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
    return;

  switch (partition) {
    case PARTITION_NONE:
      set_mode_info_offsets(&cm->mi_params, &cpi->mbmi_ext_info, x, xd, mi_row,
                            mi_col);
      *(xd->mi[0]) = pc_tree->none->mic;
      copy_mbmi_ext_frame_to_mbmi_ext(
          &x->mbmi_ext, &pc_tree->none->mbmi_ext_best, LAST_FRAME);
      duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
      break;
    case PARTITION_SPLIT: {
      fill_mode_info_sb(cpi, x, mi_row, mi_col, subsize, pc_tree->split[0]);
      fill_mode_info_sb(cpi, x, mi_row, mi_col + hbs, subsize,
                        pc_tree->split[1]);
      fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col, subsize,
                        pc_tree->split[2]);
      fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col + hbs, subsize,
                        pc_tree->split[3]);
      break;
    }
    default: break;
  }
}

void av1_nonrd_pick_partition(AV1_COMP *cpi, ThreadData *td,
                              TileDataEnc *tile_data, TokenExtra **tp,
                              int mi_row, int mi_col, BLOCK_SIZE bsize,
                              RD_STATS *rd_cost, int do_recon, int64_t best_rd,
                              PC_TREE *pc_tree) {
  AV1_COMMON *const cm = &cpi->common;
  TileInfo *const tile_info = &tile_data->tile_info;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  const int hbs = mi_size_wide[bsize] >> 1;
  TokenExtra *tp_orig = *tp;
  const ModeCosts *mode_costs = &x->mode_costs;
  RD_STATS this_rdc, best_rdc;
  RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
  int do_split = bsize > BLOCK_8X8;
  // Override skipping rectangular partition operations for edge blocks
  const int force_horz_split = (mi_row + 2 * hbs > cm->mi_params.mi_rows);
  const int force_vert_split = (mi_col + 2 * hbs > cm->mi_params.mi_cols);

  int partition_none_allowed = !force_horz_split && !force_vert_split;

  assert(mi_size_wide[bsize] == mi_size_high[bsize]);  // Square partition only
  assert(cm->seq_params->sb_size == BLOCK_64X64);      // Small SB so far

  (void)*tp_orig;

  av1_invalid_rd_stats(&best_rdc);
  best_rdc.rdcost = best_rd;
#ifndef _COLLECT_GROUND_TRUTH_
  if (partition_none_allowed && do_split) {
    const int ml_predicted_partition =
        ml_predict_var_partitioning(cpi, x, bsize, mi_row, mi_col);
    if (ml_predicted_partition == PARTITION_NONE) do_split = 0;
    if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0;
  }
#endif

  xd->above_txfm_context =
      cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
  av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3);

  // PARTITION_NONE
  if (partition_none_allowed) {
    pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
    if (!pc_tree->none)
      aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                         "Failed to allocate PICK_MODE_CONTEXT");
    PICK_MODE_CONTEXT *ctx = pc_tree->none;

// Flip for RDO based pick mode
#if 0
    RD_STATS dummy;
    av1_invalid_rd_stats(&dummy);
    pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc,
                  PARTITION_NONE, bsize, ctx, dummy);
#else
    pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize,
                        ctx);
#endif
    if (this_rdc.rate != INT_MAX) {
      const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);

      this_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
      this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
      if (this_rdc.rdcost < best_rdc.rdcost) {
        best_rdc = this_rdc;
        if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
      }
    }
  }

  // PARTITION_SPLIT
  if (do_split) {
    RD_STATS sum_rdc;
    const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);

    av1_init_rd_stats(&sum_rdc);

    for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
      pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
      if (!pc_tree->split[i])
        aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                           "Failed to allocate PC_TREE");
      pc_tree->split[i]->index = i;
    }

    int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
    sum_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
    sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
    for (int i = 0;
         i < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
      const int x_idx = (i & 1) * hbs;
      const int y_idx = (i >> 1) * hbs;

      if (mi_row + y_idx >= cm->mi_params.mi_rows ||
          mi_col + x_idx >= cm->mi_params.mi_cols)
        continue;
      av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
                               mi_col + x_idx, subsize, &this_rdc, i < 3,
                               best_rdc.rdcost - sum_rdc.rdcost,
                               pc_tree->split[i]);

      if (this_rdc.rate == INT_MAX) {
        av1_invalid_rd_stats(&sum_rdc);
      } else {
        sum_rdc.rate += this_rdc.rate;
        sum_rdc.dist += this_rdc.dist;
        sum_rdc.rdcost += this_rdc.rdcost;
      }
    }
    if (sum_rdc.rdcost < best_rdc.rdcost) {
      best_rdc = sum_rdc;
      pc_tree->partitioning = PARTITION_SPLIT;
    }
  }

#ifdef _COLLECT_GROUND_TRUTH_
  store_partition_data(cpi, x, bsize, mi_row, mi_col, pc_tree->partitioning);
#endif

  *rd_cost = best_rdc;

  av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);

  if (best_rdc.rate == INT_MAX) {
    av1_invalid_rd_stats(rd_cost);
    return;
  }

  // update mode info array
  fill_mode_info_sb(cpi, x, mi_row, mi_col, bsize, pc_tree);

  if (do_recon) {
    if (bsize == cm->seq_params->sb_size) {
      // NOTE: To get estimate for rate due to the tokens, use:
      // int rate_coeffs = 0;
      // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
      //           bsize, pc_tree, &rate_coeffs);
      set_cb_offsets(x->cb_offset, 0, 0);
      encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
                pc_tree, NULL);
    } else {
      encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
                pc_tree, NULL);
    }
  }

  if (bsize == BLOCK_64X64 && do_recon) {
    assert(best_rdc.rate < INT_MAX);
    assert(best_rdc.dist < INT64_MAX);
  } else {
    assert(tp_orig == *tp);
  }
}
#endif  // CONFIG_RT_ML_PARTITIONING