chromium/third_party/libaom/source/libaom/aom_dsp/x86/variance_avx2.c

/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <immintrin.h>

#include "config/aom_dsp_rtcd.h"

#include "aom_dsp/x86/masked_variance_intrin_ssse3.h"
#include "aom_dsp/x86/synonyms.h"

static inline __m128i mm256_add_hi_lo_epi16(const __m256i val) {}

static inline __m128i mm256_add_hi_lo_epi32(const __m256i val) {}

static inline void variance_kernel_avx2(const __m256i src, const __m256i ref,
                                        __m256i *const sse,
                                        __m256i *const sum) {}

static inline int variance_final_from_32bit_sum_avx2(__m256i vsse, __m128i vsum,
                                                     unsigned int *const sse) {}

// handle pixels (<= 512)
static inline int variance_final_512_avx2(__m256i vsse, __m256i vsum,
                                          unsigned int *const sse) {}

// handle 1024 pixels (32x32, 16x64, 64x16)
static inline int variance_final_1024_avx2(__m256i vsse, __m256i vsum,
                                           unsigned int *const sse) {}

static inline __m256i sum_to_32bit_avx2(const __m256i sum) {}

// handle 2048 pixels (32x64, 64x32)
static inline int variance_final_2048_avx2(__m256i vsse, __m256i vsum,
                                           unsigned int *const sse) {}

static inline void variance16_kernel_avx2(
    const uint8_t *const src, const int src_stride, const uint8_t *const ref,
    const int ref_stride, __m256i *const sse, __m256i *const sum) {}

static inline void variance32_kernel_avx2(const uint8_t *const src,
                                          const uint8_t *const ref,
                                          __m256i *const sse,
                                          __m256i *const sum) {}

static inline void variance16_avx2(const uint8_t *src, const int src_stride,
                                   const uint8_t *ref, const int ref_stride,
                                   const int h, __m256i *const vsse,
                                   __m256i *const vsum) {}

static inline void variance32_avx2(const uint8_t *src, const int src_stride,
                                   const uint8_t *ref, const int ref_stride,
                                   const int h, __m256i *const vsse,
                                   __m256i *const vsum) {}

static inline void variance64_avx2(const uint8_t *src, const int src_stride,
                                   const uint8_t *ref, const int ref_stride,
                                   const int h, __m256i *const vsse,
                                   __m256i *const vsum) {}

static inline void variance128_avx2(const uint8_t *src, const int src_stride,
                                    const uint8_t *ref, const int ref_stride,
                                    const int h, __m256i *const vsse,
                                    __m256i *const vsum) {}

#define AOM_VAR_NO_LOOP_AVX2(bw, bh, bits, max_pixel)

AOM_VAR_NO_LOOP_AVX2()
AOM_VAR_NO_LOOP_AVX2()
AOM_VAR_NO_LOOP_AVX2()

AOM_VAR_NO_LOOP_AVX2()
AOM_VAR_NO_LOOP_AVX2()
AOM_VAR_NO_LOOP_AVX2()

AOM_VAR_NO_LOOP_AVX2()

#if !CONFIG_REALTIME_ONLY
AOM_VAR_NO_LOOP_AVX2(64, 16, 10, 1024)
AOM_VAR_NO_LOOP_AVX2(32, 8, 8, 512)
AOM_VAR_NO_LOOP_AVX2(16, 64, 10, 1024)
AOM_VAR_NO_LOOP_AVX2(16, 4, 6, 512)
#endif

#define AOM_VAR_LOOP_AVX2(bw, bh, bits, uh)

AOM_VAR_LOOP_AVX2()    // 64x32 * ( 64/32)
AOM_VAR_LOOP_AVX2()   // 64x32 * (128/32)
AOM_VAR_LOOP_AVX2()   // 128x16 * ( 64/16)
AOM_VAR_LOOP_AVX2()  // 128x16 * (128/16)

unsigned int aom_mse16x16_avx2(const uint8_t *src, int src_stride,
                               const uint8_t *ref, int ref_stride,
                               unsigned int *sse) {}

static inline __m256i mm256_loadu2(const uint8_t *p0, const uint8_t *p1) {}

#if CONFIG_AV1_HIGHBITDEPTH
static inline __m256i mm256_loadu2_16(const uint16_t *p0, const uint16_t *p1) {
  const __m256i d =
      _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)p1));
  return _mm256_insertf128_si256(d, _mm_loadu_si128((const __m128i *)p0), 1);
}
#endif  // CONFIG_AV1_HIGHBITDEPTH

static inline void comp_mask_pred_line_avx2(const __m256i s0, const __m256i s1,
                                            const __m256i a,
                                            uint8_t *comp_pred) {}

void aom_comp_avg_pred_avx2(uint8_t *comp_pred, const uint8_t *pred, int width,
                            int height, const uint8_t *ref, int ref_stride) {}

void aom_comp_mask_pred_avx2(uint8_t *comp_pred, const uint8_t *pred, int width,
                             int height, const uint8_t *ref, int ref_stride,
                             const uint8_t *mask, int mask_stride,
                             int invert_mask) {}

#if CONFIG_AV1_HIGHBITDEPTH
static inline __m256i highbd_comp_mask_pred_line_avx2(const __m256i s0,
                                                      const __m256i s1,
                                                      const __m256i a) {
  const __m256i alpha_max = _mm256_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
  const __m256i round_const =
      _mm256_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
  const __m256i a_inv = _mm256_sub_epi16(alpha_max, a);

  const __m256i s_lo = _mm256_unpacklo_epi16(s0, s1);
  const __m256i a_lo = _mm256_unpacklo_epi16(a, a_inv);
  const __m256i pred_lo = _mm256_madd_epi16(s_lo, a_lo);
  const __m256i pred_l = _mm256_srai_epi32(
      _mm256_add_epi32(pred_lo, round_const), AOM_BLEND_A64_ROUND_BITS);

  const __m256i s_hi = _mm256_unpackhi_epi16(s0, s1);
  const __m256i a_hi = _mm256_unpackhi_epi16(a, a_inv);
  const __m256i pred_hi = _mm256_madd_epi16(s_hi, a_hi);
  const __m256i pred_h = _mm256_srai_epi32(
      _mm256_add_epi32(pred_hi, round_const), AOM_BLEND_A64_ROUND_BITS);

  const __m256i comp = _mm256_packs_epi32(pred_l, pred_h);

  return comp;
}

void aom_highbd_comp_mask_pred_avx2(uint8_t *comp_pred8, const uint8_t *pred8,
                                    int width, int height, const uint8_t *ref8,
                                    int ref_stride, const uint8_t *mask,
                                    int mask_stride, int invert_mask) {
  int i = 0;
  uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
  uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
  uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8);
  const uint16_t *src0 = invert_mask ? pred : ref;
  const uint16_t *src1 = invert_mask ? ref : pred;
  const int stride0 = invert_mask ? width : ref_stride;
  const int stride1 = invert_mask ? ref_stride : width;
  const __m256i zero = _mm256_setzero_si256();

  if (width == 8) {
    do {
      const __m256i s0 = mm256_loadu2_16(src0 + stride0, src0);
      const __m256i s1 = mm256_loadu2_16(src1 + stride1, src1);

      const __m128i m_l = _mm_loadl_epi64((const __m128i *)mask);
      const __m128i m_h = _mm_loadl_epi64((const __m128i *)(mask + 8));

      __m256i m = _mm256_castsi128_si256(m_l);
      m = _mm256_insertf128_si256(m, m_h, 1);
      const __m256i m_16 = _mm256_unpacklo_epi8(m, zero);

      const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m_16);

      _mm_storeu_si128((__m128i *)(comp_pred), _mm256_castsi256_si128(comp));

      _mm_storeu_si128((__m128i *)(comp_pred + width),
                       _mm256_extractf128_si256(comp, 1));

      src0 += (stride0 << 1);
      src1 += (stride1 << 1);
      mask += (mask_stride << 1);
      comp_pred += (width << 1);
      i += 2;
    } while (i < height);
  } else if (width == 16) {
    do {
      const __m256i s0 = _mm256_loadu_si256((const __m256i *)(src0));
      const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src1));
      const __m256i m_16 =
          _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)mask));

      const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m_16);

      _mm256_storeu_si256((__m256i *)comp_pred, comp);

      src0 += stride0;
      src1 += stride1;
      mask += mask_stride;
      comp_pred += width;
      i += 1;
    } while (i < height);
  } else {
    do {
      for (int x = 0; x < width; x += 32) {
        const __m256i s0 = _mm256_loadu_si256((const __m256i *)(src0 + x));
        const __m256i s2 = _mm256_loadu_si256((const __m256i *)(src0 + x + 16));
        const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src1 + x));
        const __m256i s3 = _mm256_loadu_si256((const __m256i *)(src1 + x + 16));

        const __m256i m01_16 =
            _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)(mask + x)));
        const __m256i m23_16 = _mm256_cvtepu8_epi16(
            _mm_loadu_si128((const __m128i *)(mask + x + 16)));

        const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m01_16);
        const __m256i comp1 = highbd_comp_mask_pred_line_avx2(s2, s3, m23_16);

        _mm256_storeu_si256((__m256i *)comp_pred, comp);
        _mm256_storeu_si256((__m256i *)(comp_pred + 16), comp1);

        comp_pred += 32;
      }
      src0 += stride0;
      src1 += stride1;
      mask += mask_stride;
      i += 1;
    } while (i < height);
  }
}
#endif  // CONFIG_AV1_HIGHBITDEPTH

static uint64_t mse_4xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
                                   int sstride, int h) {}

// Compute mse of four consecutive 4x4 blocks.
// In src buffer, each 4x4 block in a 32x32 filter block is stored sequentially.
// Hence src_blk_stride is same as block width. Whereas dst buffer is a frame
// buffer, thus dstride is a frame level stride.
static uint64_t mse_4xh_quad_16bit_avx2(uint8_t *dst, int dstride,
                                        uint16_t *src, int src_blk_stride,
                                        int h) {}

static uint64_t mse_8xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
                                   int sstride, int h) {}

// Compute mse of two consecutive 8x8 blocks.
// In src buffer, each 8x8 block in a 64x64 filter block is stored sequentially.
// Hence src_blk_stride is same as block width. Whereas dst buffer is a frame
// buffer, thus dstride is a frame level stride.
static uint64_t mse_8xh_dual_16bit_avx2(uint8_t *dst, int dstride,
                                        uint16_t *src, int src_blk_stride,
                                        int h) {}

uint64_t aom_mse_wxh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
                                int sstride, int w, int h) {}

// Computes mse of two 8x8 or four 4x4 consecutive blocks. Luma plane uses 8x8
// block and Chroma uses 4x4 block. In src buffer, each block in a filter block
// is stored sequentially. Hence src_blk_stride is same as block width. Whereas
// dst buffer is a frame buffer, thus dstride is a frame level stride.
uint64_t aom_mse_16xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
                                 int w, int h) {}

static inline void calc_sum_sse_wd32_avx2(const uint8_t *src,
                                          const uint8_t *ref,
                                          __m256i set_one_minusone,
                                          __m256i sse_8x16[2],
                                          __m256i sum_8x16[2]) {}

static inline __m256i calc_sum_sse_order(__m256i *sse_hx16, __m256i *sum_hx16,
                                         unsigned int *tot_sse, int *tot_sum) {}

static inline void get_var_sse_sum_8x8_quad_avx2(
    const uint8_t *src, int src_stride, const uint8_t *ref,
    const int ref_stride, const int h, uint32_t *sse8x8, int *sum8x8,
    unsigned int *tot_sse, int *tot_sum, uint32_t *var8x8) {}

static inline void get_var_sse_sum_16x16_dual_avx2(
    const uint8_t *src, int src_stride, const uint8_t *ref,
    const int ref_stride, const int h, uint32_t *sse16x16,
    unsigned int *tot_sse, int *tot_sum, uint32_t *var16x16) {}

void aom_get_var_sse_sum_8x8_quad_avx2(const uint8_t *src_ptr,
                                       int source_stride,
                                       const uint8_t *ref_ptr, int ref_stride,
                                       uint32_t *sse8x8, int *sum8x8,
                                       unsigned int *tot_sse, int *tot_sum,
                                       uint32_t *var8x8) {}

void aom_get_var_sse_sum_16x16_dual_avx2(const uint8_t *src_ptr,
                                         int source_stride,
                                         const uint8_t *ref_ptr, int ref_stride,
                                         uint32_t *sse16x16,
                                         unsigned int *tot_sse, int *tot_sum,
                                         uint32_t *var16x16) {}