chromium/third_party/libwebp/src/src/enc/vp8i_enc.h

// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
//   WebP encoder: internal header.
//
// Author: Skal ([email protected])

#ifndef WEBP_ENC_VP8I_ENC_H_
#define WEBP_ENC_VP8I_ENC_H_

#include <string.h>     // for memcpy()
#include "src/dec/common_dec.h"
#include "src/dsp/dsp.h"
#include "src/utils/bit_writer_utils.h"
#include "src/utils/thread_utils.h"
#include "src/utils/utils.h"
#include "src/webp/encode.h"

#ifdef __cplusplus
extern "C" {
#endif

//------------------------------------------------------------------------------
// Various defines and enums

// version numbers
#define ENC_MAJ_VERSION
#define ENC_MIN_VERSION
#define ENC_REV_VERSION

enum {};

VP8RDLevel;

// YUV-cache parameters. Cache is 32-bytes wide (= one cacheline).
// The original or reconstructed samples can be accessed using VP8Scan[].
// The predicted blocks can be accessed using offsets to yuv_p_ and
// the arrays VP8*ModeOffsets[].
// * YUV Samples area (yuv_in_/yuv_out_/yuv_out2_)
//   (see VP8Scan[] for accessing the blocks, along with
//   Y_OFF_ENC/U_OFF_ENC/V_OFF_ENC):
//             +----+----+
//  Y_OFF_ENC  |YYYY|UUVV|
//  U_OFF_ENC  |YYYY|UUVV|
//  V_OFF_ENC  |YYYY|....| <- 25% wasted U/V area
//             |YYYY|....|
//             +----+----+
// * Prediction area ('yuv_p_', size = PRED_SIZE_ENC)
//   Intra16 predictions (16x16 block each, two per row):
//         |I16DC16|I16TM16|
//         |I16VE16|I16HE16|
//   Chroma U/V predictions (16x8 block each, two per row):
//         |C8DC8|C8TM8|
//         |C8VE8|C8HE8|
//   Intra 4x4 predictions (4x4 block each)
//         |I4DC4 I4TM4 I4VE4 I4HE4|I4RD4 I4VR4 I4LD4 I4VL4|
//         |I4HD4 I4HU4 I4TMP .....|.......................| <- ~31% wasted
#define YUV_SIZE_ENC
#define PRED_SIZE_ENC
#define Y_OFF_ENC
#define U_OFF_ENC
#define V_OFF_ENC

extern const uint16_t VP8Scan[16];
extern const uint16_t VP8UVModeOffsets[4];
extern const uint16_t VP8I16ModeOffsets[4];
extern const uint16_t VP8I4ModeOffsets[NUM_BMODES];

// Layout of prediction blocks
// intra 16x16
#define I16DC16
#define I16TM16
#define I16VE16
#define I16HE16
// chroma 8x8, two U/V blocks side by side (hence: 16x8 each)
#define C8DC8
#define C8TM8
#define C8VE8
#define C8HE8
// intra 4x4
#define I4DC4
#define I4TM4
#define I4VE4
#define I4HE4
#define I4RD4
#define I4VR4
#define I4LD4
#define I4VL4
#define I4HD4
#define I4HU4
#define I4TMP

score_t;     // type used for scores, rate, distortion
// Note that MAX_COST is not the maximum allowed by sizeof(score_t),
// in order to allow overflowing computations.
#define MAX_COST

#define QFIX
#define BIAS(b)
// Fun fact: this is the _only_ line where we're actually being lossy and
// discarding bits.
static WEBP_INLINE int QUANTDIV(uint32_t n, uint32_t iQ, uint32_t B) {}

// Uncomment the following to remove token-buffer code:
// #define DISABLE_TOKEN_BUFFER

// quality below which error-diffusion is enabled
#define ERROR_DIFFUSION_QUALITY

//------------------------------------------------------------------------------
// Headers

proba_t;   // 16b + 16b
ProbaArray;
StatsArray;
CostArray;
CostArrayPtr;   // for easy casting
CostArrayMap;
LFStats;  // filter stats

VP8Encoder;

// segment features
VP8EncSegmentHeader;

// Struct collecting all frame-persistent probabilities.
VP8EncProba;

// Filter parameters. Not actually used in the code (we don't perform
// the in-loop filtering), but filled from user's config
VP8EncFilterHeader;

//------------------------------------------------------------------------------
// Informations about the macroblocks.

VP8MBInfo;

VP8Matrix;

VP8SegmentInfo;

DError;

// Handy transient struct to accumulate score and info during RD-optimization
// and mode evaluation.
VP8ModeScore;

// Iterator structure to iterate through macroblocks, pointing to the
// right neighbouring data (samples, predictions, contexts, ...)
VP8EncIterator;

  // in iterator.c
// must be called first
void VP8IteratorInit(VP8Encoder* const enc, VP8EncIterator* const it);
// restart a scan
void VP8IteratorReset(VP8EncIterator* const it);
// reset iterator position to row 'y'
void VP8IteratorSetRow(VP8EncIterator* const it, int y);
// set count down (=number of iterations to go)
void VP8IteratorSetCountDown(VP8EncIterator* const it, int count_down);
// return true if iteration is finished
int VP8IteratorIsDone(const VP8EncIterator* const it);
// Import uncompressed samples from source.
// If tmp_32 is not NULL, import boundary samples too.
// tmp_32 is a 32-bytes scratch buffer that must be aligned in memory.
void VP8IteratorImport(VP8EncIterator* const it, uint8_t* const tmp_32);
// export decimated samples
void VP8IteratorExport(const VP8EncIterator* const it);
// go to next macroblock. Returns false if not finished.
int VP8IteratorNext(VP8EncIterator* const it);
// save the yuv_out_ boundary values to top_/left_ arrays for next iterations.
void VP8IteratorSaveBoundary(VP8EncIterator* const it);
// Report progression based on macroblock rows. Return 0 for user-abort request.
int VP8IteratorProgress(const VP8EncIterator* const it, int delta);
// Intra4x4 iterations
void VP8IteratorStartI4(VP8EncIterator* const it);
// returns true if not done.
int VP8IteratorRotateI4(VP8EncIterator* const it,
                        const uint8_t* const yuv_out);

// Non-zero context setup/teardown
void VP8IteratorNzToBytes(VP8EncIterator* const it);
void VP8IteratorBytesToNz(VP8EncIterator* const it);

// Helper functions to set mode properties
void VP8SetIntra16Mode(const VP8EncIterator* const it, int mode);
void VP8SetIntra4Mode(const VP8EncIterator* const it, const uint8_t* modes);
void VP8SetIntraUVMode(const VP8EncIterator* const it, int mode);
void VP8SetSkip(const VP8EncIterator* const it, int skip);
void VP8SetSegment(const VP8EncIterator* const it, int segment);

//------------------------------------------------------------------------------
// Paginated token buffer

VP8Tokens;  // struct details in token.c

VP8TBuffer;

// initialize an empty buffer
void VP8TBufferInit(VP8TBuffer* const b, int page_size);
void VP8TBufferClear(VP8TBuffer* const b);   // de-allocate pages memory

#if !defined(DISABLE_TOKEN_BUFFER)

// Finalizes bitstream when probabilities are known.
// Deletes the allocated token memory if final_pass is true.
int VP8EmitTokens(VP8TBuffer* const b, VP8BitWriter* const bw,
                  const uint8_t* const probas, int final_pass);

// record the coding of coefficients without knowing the probabilities yet
int VP8RecordCoeffTokens(int ctx, const struct VP8Residual* const res,
                         VP8TBuffer* const tokens);

// Estimate the final coded size given a set of 'probas'.
size_t VP8EstimateTokenSize(VP8TBuffer* const b, const uint8_t* const probas);

#endif  // !DISABLE_TOKEN_BUFFER

//------------------------------------------------------------------------------
// VP8Encoder

struct VP8Encoder {};

//------------------------------------------------------------------------------
// internal functions. Not public.

  // in tree.c
extern const uint8_t VP8CoeffsProba0[NUM_TYPES][NUM_BANDS][NUM_CTX][NUM_PROBAS];
extern const uint8_t
    VP8CoeffsUpdateProba[NUM_TYPES][NUM_BANDS][NUM_CTX][NUM_PROBAS];
// Reset the token probabilities to their initial (default) values
void VP8DefaultProbas(VP8Encoder* const enc);
// Write the token probabilities
void VP8WriteProbas(VP8BitWriter* const bw, const VP8EncProba* const probas);
// Writes the partition #0 modes (that is: all intra modes)
void VP8CodeIntraModes(VP8Encoder* const enc);

  // in syntax.c
// Generates the final bitstream by coding the partition0 and headers,
// and appending an assembly of all the pre-coded token partitions.
// Return true if everything is ok.
int VP8EncWrite(VP8Encoder* const enc);
// Release memory allocated for bit-writing in VP8EncLoop & seq.
void VP8EncFreeBitWriters(VP8Encoder* const enc);

  // in frame.c
extern const uint8_t VP8Cat3[];
extern const uint8_t VP8Cat4[];
extern const uint8_t VP8Cat5[];
extern const uint8_t VP8Cat6[];

// Form all the four Intra16x16 predictions in the yuv_p_ cache
void VP8MakeLuma16Preds(const VP8EncIterator* const it);
// Form all the four Chroma8x8 predictions in the yuv_p_ cache
void VP8MakeChroma8Preds(const VP8EncIterator* const it);
// Form all the ten Intra4x4 predictions in the yuv_p_ cache
// for the 4x4 block it->i4_
void VP8MakeIntra4Preds(const VP8EncIterator* const it);
// Rate calculation
int VP8GetCostLuma16(VP8EncIterator* const it, const VP8ModeScore* const rd);
int VP8GetCostLuma4(VP8EncIterator* const it, const int16_t levels[16]);
int VP8GetCostUV(VP8EncIterator* const it, const VP8ModeScore* const rd);
// Main coding calls
int VP8EncLoop(VP8Encoder* const enc);
int VP8EncTokenLoop(VP8Encoder* const enc);

  // in webpenc.c
// Assign an error code to a picture. Return false for convenience.
int WebPEncodingSetError(const WebPPicture* const pic, WebPEncodingError error);
int WebPReportProgress(const WebPPicture* const pic,
                       int percent, int* const percent_store);

  // in analysis.c
// Main analysis loop. Decides the segmentations and complexity.
// Assigns a first guess for Intra16 and uvmode_ prediction modes.
int VP8EncAnalyze(VP8Encoder* const enc);

  // in quant.c
// Sets up segment's quantization values, base_quant_ and filter strengths.
void VP8SetSegmentParams(VP8Encoder* const enc, float quality);
// Pick best modes and fills the levels. Returns true if skipped.
int VP8Decimate(VP8EncIterator* WEBP_RESTRICT const it,
                VP8ModeScore* WEBP_RESTRICT const rd,
                VP8RDLevel rd_opt);

  // in alpha.c
void VP8EncInitAlpha(VP8Encoder* const enc);    // initialize alpha compression
int VP8EncStartAlpha(VP8Encoder* const enc);    // start alpha coding process
int VP8EncFinishAlpha(VP8Encoder* const enc);   // finalize compressed data
int VP8EncDeleteAlpha(VP8Encoder* const enc);   // delete compressed data

// autofilter
void VP8InitFilter(VP8EncIterator* const it);
void VP8StoreFilterStats(VP8EncIterator* const it);
void VP8AdjustFilterStrength(VP8EncIterator* const it);

// returns the approximate filtering strength needed to smooth a edge
// step of 'delta', given a sharpness parameter 'sharpness'.
int VP8FilterStrengthFromDelta(int sharpness, int delta);

  // misc utils for picture_*.c:

// Returns true if 'picture' is non-NULL and dimensions/colorspace are within
// their valid ranges. If returning false, the 'error_code' in 'picture' is
// updated.
int WebPValidatePicture(const WebPPicture* const picture);

// Remove reference to the ARGB/YUVA buffer (doesn't free anything).
void WebPPictureResetBuffers(WebPPicture* const picture);

// Allocates ARGB buffer according to set width/height (previous one is
// always free'd). Preserves the YUV(A) buffer. Returns false in case of error
// (invalid param, out-of-memory).
int WebPPictureAllocARGB(WebPPicture* const picture);

// Allocates YUVA buffer according to set width/height (previous one is always
// free'd). Uses picture->csp to determine whether an alpha buffer is needed.
// Preserves the ARGB buffer.
// Returns false in case of error (invalid param, out-of-memory).
int WebPPictureAllocYUVA(WebPPicture* const picture);

// Replace samples that are fully transparent by 'color' to help compressibility
// (no guarantee, though). Assumes pic->use_argb is true.
void WebPReplaceTransparentPixels(WebPPicture* const pic, uint32_t color);

//------------------------------------------------------------------------------

#ifdef __cplusplus
}    // extern "C"
#endif

#endif  // WEBP_ENC_VP8I_ENC_H_