// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2010 Benoit Jacob <[email protected]> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_NUMTRAITS_H #define EIGEN_NUMTRAITS_H // IWYU pragma: private #include "./InternalHeaderCheck.h" namespace Eigen { namespace internal { // default implementation of digits(), based on numeric_limits if specialized, // 0 for integer types, and log2(epsilon()) otherwise. template <typename T, bool use_numeric_limits = std::numeric_limits<T>::is_specialized, bool is_integer = NumTraits<T>::IsInteger> struct default_digits_impl { … }; default_digits_impl<T, false, false>; default_digits_impl<T, false, true>; // default implementation of digits10(), based on numeric_limits if specialized, // 0 for integer types, and floor((digits()-1)*log10(2)) otherwise. template <typename T, bool use_numeric_limits = std::numeric_limits<T>::is_specialized, bool is_integer = NumTraits<T>::IsInteger> struct default_digits10_impl { … }; default_digits10_impl<T, false, false>; default_digits10_impl<T, false, true>; // default implementation of max_digits10(), based on numeric_limits if specialized, // 0 for integer types, and log10(2) * digits() + 1 otherwise. template <typename T, bool use_numeric_limits = std::numeric_limits<T>::is_specialized, bool is_integer = NumTraits<T>::IsInteger> struct default_max_digits10_impl { … }; default_max_digits10_impl<T, false, false>; default_max_digits10_impl<T, false, true>; } // end namespace internal namespace numext { /** \internal bit-wise cast without changing the underlying bit representation. */ // TODO: Replace by std::bit_cast (available in C++20) template <typename Tgt, typename Src> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Tgt bit_cast(const Src& src) { … } } // namespace numext /** \class NumTraits * \ingroup Core_Module * * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen. * * \tparam T the numeric type at hand * * This class stores enums, typedefs and static methods giving information about a numeric type. * * The provided data consists of: * \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real, * then \c Real is just a typedef to \a T. If \a T is \c std::complex<U> then \c Real * is a typedef to \a U. * \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values, * such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives * \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to * take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is * only intended as a helper for code that needs to explicitly promote types. * \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c * std::complex<U>, Literal is defined as \c U. Of course, this type must be fully compatible with \a T. In doubt, just * use \a T here. \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you * don't know what this means, just use \a T here. \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c * std::complex type, and to 0 otherwise. \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type * such as \c int, and to \c 0 otherwise. \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of * the number of CPU cycles needed to by move / add / mul instructions respectively, assuming the data is already stored * in CPU registers. Stay vague here. No need to do architecture-specific stuff. If you don't know what this means, just * use \c Eigen::HugeCost. \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T * is unsigned. \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type * \a T must be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 * otherwise. \li An epsilon() function which, unlike <a * href="http://en.cppreference.com/w/cpp/types/numeric_limits/epsilon">std::numeric_limits::epsilon()</a>, it returns a * \a Real instead of a \a T. \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a * default value by the fuzzy comparison operators. \li highest() and lowest() functions returning the highest and * lowest possible values respectively. \li digits() function returning the number of radix digits (non-sign digits for * integers, mantissa for floating-point). This is the analogue of <a * href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits">std::numeric_limits<T>::digits</a> which is used * as the default implementation if specialized. \li digits10() function returning the number of decimal digits that can * be represented without change. This is the analogue of <a * href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits10">std::numeric_limits<T>::digits10</a> which is * used as the default implementation if specialized. \li max_digits10() function returning the number of decimal digits * required to uniquely represent all distinct values of the type. This is the analogue of <a * href="http://en.cppreference.com/w/cpp/types/numeric_limits/max_digits10">std::numeric_limits<T>::max_digits10</a> * which is used as the default implementation if specialized. * \li min_exponent() and max_exponent() functions returning the highest and lowest possible values, respectively, * such that the radix raised to the power exponent-1 is a normalized floating-point number. These are equivalent * to <a * href="http://en.cppreference.com/w/cpp/types/numeric_limits/min_exponent">std::numeric_limits<T>::min_exponent</a>/ * <a * href="http://en.cppreference.com/w/cpp/types/numeric_limits/max_exponent">std::numeric_limits<T>::max_exponent</a>. * \li infinity() function returning a representation of positive infinity, if available. * \li quiet_NaN function returning a non-signaling "not-a-number", if available. */ template <typename T> struct GenericNumTraits { … }; template <typename T> struct NumTraits : GenericNumTraits<T> { … }; template <> struct NumTraits<float> : GenericNumTraits<float> { … }; template <> struct NumTraits<double> : GenericNumTraits<double> { … }; // GPU devices treat `long double` as `double`. #ifndef EIGEN_GPU_COMPILE_PHASE template <> struct NumTraits<long double> : GenericNumTraits<long double> { … }; #endif NumTraits<std::complex<Real_>>; NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols>>; template <> struct NumTraits<std::string> : GenericNumTraits<std::string> { … }; // Empty specialization for void to allow template specialization based on NumTraits<T>::Real with T==void and SFINAE. template <> struct NumTraits<void> { … }; template <> struct NumTraits<bool> : GenericNumTraits<bool> { … }; } // end namespace Eigen #endif // EIGEN_NUMTRAITS_H