/** \returns an expression of the coefficient wise product of \c *this and \a other * * \sa MatrixBase::cwiseProduct */ template <typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const EIGEN_CWISE_BINARY_RETURN_TYPE(Derived, OtherDerived, product) operator*( const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const { … } /** \returns an expression of the coefficient wise quotient of \c *this and \a other * * \sa MatrixBase::cwiseQuotient */ template <typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_quotient_op<Scalar, typename OtherDerived::Scalar>, const Derived, const OtherDerived> operator/(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const { … } /** \returns an expression of the coefficient-wise min of \c *this and \a other * * Example: \include Cwise_min.cpp * Output: \verbinclude Cwise_min.out * * \sa max() */ template <int NaNPropagation = PropagateFast, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar, Scalar, NaNPropagation>, const Derived, const OtherDerived> #ifdef EIGEN_PARSED_BY_DOXYGEN min #else (min) #endif (const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const { … } /** \returns an expression of the coefficient-wise min of \c *this and scalar \a other * * \sa max() */ template <int NaNPropagation = PropagateFast> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar, Scalar, NaNPropagation>, const Derived, const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> > #ifdef EIGEN_PARSED_BY_DOXYGEN min #else (min) #endif (const Scalar &other) const { … } /** \returns an expression of the coefficient-wise max of \c *this and \a other * * Example: \include Cwise_max.cpp * Output: \verbinclude Cwise_max.out * * \sa min() */ template <int NaNPropagation = PropagateFast, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar, Scalar, NaNPropagation>, const Derived, const OtherDerived> #ifdef EIGEN_PARSED_BY_DOXYGEN max #else (max) #endif (const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const { … } /** \returns an expression of the coefficient-wise max of \c *this and scalar \a other * * \sa min() */ template <int NaNPropagation = PropagateFast> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar, Scalar, NaNPropagation>, const Derived, const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> > #ifdef EIGEN_PARSED_BY_DOXYGEN max #else (max) #endif (const Scalar &other) const { … } /** \returns an expression of the coefficient-wise absdiff of \c *this and \a other * * Example: \include Cwise_absolute_difference.cpp * Output: \verbinclude Cwise_absolute_difference.out * * \sa absolute_difference() */ EIGEN_MAKE_CWISE_BINARY_OP(absolute_difference, absolute_difference) /** \returns an expression of the coefficient-wise absolute_difference of \c *this and scalar \a other * * \sa absolute_difference() */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_absolute_difference_op<Scalar, Scalar>, const Derived, const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> > #ifdef EIGEN_PARSED_BY_DOXYGEN absolute_difference #else (absolute_difference) #endif (const Scalar &other) const { … } /** \returns an expression of the coefficient-wise power of \c *this to the given array of \a exponents. * * This function computes the coefficient-wise power. * * Example: \include Cwise_array_power_array.cpp * Output: \verbinclude Cwise_array_power_array.out */ EIGEN_MAKE_CWISE_BINARY_OP(pow, pow) /** \returns an expression of the coefficient-wise atan2(\c *this, \a y), where \a y is the given array argument. * * This function computes the coefficient-wise atan2. * */ EIGEN_MAKE_CWISE_BINARY_OP(atan2, atan2) // TODO code generating macros could be moved to Macros.h and could include generation of documentation #define EIGEN_MAKE_CWISE_COMP_OP(OP, COMPARATOR) \ template <typename OtherDerived> \ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const \ CwiseBinaryOp<internal::scalar_cmp_op<Scalar, typename OtherDerived::Scalar, internal::cmp_##COMPARATOR>, \ const Derived, const OtherDerived> \ OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const { … } #define EIGEN_MAKE_CWISE_COMP_R_OP(OP, R_OP, RCOMPARATOR) \ template <typename OtherDerived> \ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const \ CwiseBinaryOp<internal::scalar_cmp_op<typename OtherDerived::Scalar, Scalar, internal::cmp_##RCOMPARATOR>, \ const OtherDerived, const Derived> \ OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const { … } /** \returns an expression of the coefficient-wise \< operator of *this and \a other * * Example: \include Cwise_less.cpp * Output: \verbinclude Cwise_less.out * * \sa all(), any(), operator>(), operator<=() */ EIGEN_MAKE_CWISE_COMP_OP(operator<, LT) /** \returns an expression of the coefficient-wise \<= operator of *this and \a other * * Example: \include Cwise_less_equal.cpp * Output: \verbinclude Cwise_less_equal.out * * \sa all(), any(), operator>=(), operator<() */ EIGEN_MAKE_CWISE_COMP_OP(operator<=, LE) /** \returns an expression of the coefficient-wise \> operator of *this and \a other * * Example: \include Cwise_greater.cpp * Output: \verbinclude Cwise_greater.out * * \sa all(), any(), operator>=(), operator<() */ EIGEN_MAKE_CWISE_COMP_R_OP(operator>, operator<, LT) /** \returns an expression of the coefficient-wise \>= operator of *this and \a other * * Example: \include Cwise_greater_equal.cpp * Output: \verbinclude Cwise_greater_equal.out * * \sa all(), any(), operator>(), operator<=() */ EIGEN_MAKE_CWISE_COMP_R_OP(operator>=, operator<=, LE) /** \returns an expression of the coefficient-wise == operator of *this and \a other * * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. * In order to check for equality between two vectors or matrices with floating-point coefficients, it is * generally a far better idea to use a fuzzy comparison as provided by isApprox() and * isMuchSmallerThan(). * * Example: \include Cwise_equal_equal.cpp * Output: \verbinclude Cwise_equal_equal.out * * \sa all(), any(), isApprox(), isMuchSmallerThan() */ EIGEN_MAKE_CWISE_COMP_OP(operator==, EQ) /** \returns an expression of the coefficient-wise != operator of *this and \a other * * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. * In order to check for equality between two vectors or matrices with floating-point coefficients, it is * generally a far better idea to use a fuzzy comparison as provided by isApprox() and * isMuchSmallerThan(). * * Example: \include Cwise_not_equal.cpp * Output: \verbinclude Cwise_not_equal.out * * \sa all(), any(), isApprox(), isMuchSmallerThan() */ EIGEN_MAKE_CWISE_COMP_OP(operator!=, NEQ) #undef EIGEN_MAKE_CWISE_COMP_OP #undef EIGEN_MAKE_CWISE_COMP_R_OP // scalar addition #ifndef EIGEN_PARSED_BY_DOXYGEN EIGEN_MAKE_SCALAR_BINARY_OP(operator+, sum) #else /** \returns an expression of \c *this with each coeff incremented by the constant \a scalar * * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. * * Example: \include Cwise_plus.cpp * Output: \verbinclude Cwise_plus.out * * \sa operator+=(), operator-() */ template <typename T> const CwiseBinaryOp<internal::scalar_sum_op<Scalar, T>, Derived, Constant<T> > operator+(const T &scalar) const; /** \returns an expression of \a expr with each coeff incremented by the constant \a scalar * * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. */ template <typename T> friend const CwiseBinaryOp<internal::scalar_sum_op<T, Scalar>, Constant<T>, Derived> operator+( const T &scalar, const StorageBaseType &expr); #endif #ifndef EIGEN_PARSED_BY_DOXYGEN EIGEN_MAKE_SCALAR_BINARY_OP(operator-, difference) #else /** \returns an expression of \c *this with each coeff decremented by the constant \a scalar * * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. * * Example: \include Cwise_minus.cpp * Output: \verbinclude Cwise_minus.out * * \sa operator+=(), operator-() */ template <typename T> const CwiseBinaryOp<internal::scalar_difference_op<Scalar, T>, Derived, Constant<T> > operator-(const T &scalar) const; /** \returns an expression of the constant matrix of value \a scalar decremented by the coefficients of \a expr * * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. */ template <typename T> friend const CwiseBinaryOp<internal::scalar_difference_op<T, Scalar>, Constant<T>, Derived> operator-( const T &scalar, const StorageBaseType &expr); #endif #ifndef EIGEN_PARSED_BY_DOXYGEN EIGEN_MAKE_SCALAR_BINARY_OP_ONTHELEFT(operator/, quotient) #else /** * \brief Component-wise division of the scalar \a s by array elements of \a a. * * \tparam Scalar is the scalar type of \a x. It must be compatible with the scalar type of the given array expression * (\c Derived::Scalar). */ template <typename T> friend inline const CwiseBinaryOp<internal::scalar_quotient_op<T, Scalar>, Constant<T>, Derived> operator/( const T &s, const StorageBaseType &a); #endif // NOTE disabled until we agree on argument order #if 0 /** \cpp11 \returns an expression of the coefficient-wise polygamma function. * * \specialfunctions_module * * It returns the \a n -th derivative of the digamma(psi) evaluated at \c *this. * * \warning Be careful with the order of the parameters: x.polygamma(n) is equivalent to polygamma(n,x) * * \sa Eigen::polygamma() */ template<typename DerivedN> inline const CwiseBinaryOp<internal::scalar_polygamma_op<Scalar>, const DerivedN, const Derived> polygamma(const EIGEN_CURRENT_STORAGE_BASE_CLASS<DerivedN> &n) const { … } return CwiseBinaryOp<internal::scalar_polygamma_op<Scalar>, const DerivedN, const Derived>(n.derived(), this->derived()); } #endif /** \returns an expression of the coefficient-wise zeta function. * * \specialfunctions_module * * It returns the Riemann zeta function of two arguments \c *this and \a q: * * \param q is the shift, it must be > 0 * * \note *this is the exponent, it must be > 1. * \note This function supports only float and double scalar types. To support other scalar types, the user has * to provide implementations of zeta(T,T) for any scalar type T to be supported. * * This method is an alias for zeta(*this,q); * * \sa Eigen::zeta() */ template <typename DerivedQ> inline const CwiseBinaryOp<internal::scalar_zeta_op<Scalar>, const Derived, const DerivedQ> zeta( const EIGEN_CURRENT_STORAGE_BASE_CLASS<DerivedQ> &q) const { … }