// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008, 2010 Benoit Jacob <[email protected]> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_DOT_H #define EIGEN_DOT_H // IWYU pragma: private #include "./InternalHeaderCheck.h" namespace Eigen { namespace internal { // helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot // with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE // looking at the static assertions. Thus this is a trick to get better compile errors. template <typename T, typename U, bool NeedToTranspose = T::IsVectorAtCompileTime && U::IsVectorAtCompileTime && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1) || (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))> struct dot_nocheck { … }; dot_nocheck<T, U, true>; } // end namespace internal /** \fn MatrixBase::dot * \returns the dot product of *this with other. * * \only_for_vectors * * \note If the scalar type is complex numbers, then this function returns the hermitian * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the * second variable. * * \sa squaredNorm(), norm() */ template <typename Derived> template <typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar, typename internal::traits<OtherDerived>::Scalar>::ReturnType MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const { … } //---------- implementation of L2 norm and related functions ---------- /** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the squared Frobenius norm. * In both cases, it consists in the sum of the square of all the matrix entries. * For vectors, this is also equals to the dot product of \c *this with itself. * * \sa dot(), norm(), lpNorm() */ template <typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const { … } /** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm. * In both cases, it consists in the square root of the sum of the square of all the matrix entries. * For vectors, this is also equals to the square root of the dot product of \c *this with itself. * * \sa lpNorm(), dot(), squaredNorm() */ template <typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const { … } /** \returns an expression of the quotient of \c *this by its own norm. * * \warning If the input vector is too small (i.e., this->norm()==0), * then this function returns a copy of the input. * * \only_for_vectors * * \sa norm(), normalize() */ template <typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::normalized() const { … } /** Normalizes the vector, i.e. divides it by its own norm. * * \only_for_vectors * * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. * * \sa norm(), normalized() */ template <typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::normalize() { … } /** \returns an expression of the quotient of \c *this by its own norm while avoiding underflow and overflow. * * \only_for_vectors * * This method is analogue to the normalized() method, but it reduces the risk of * underflow and overflow when computing the norm. * * \warning If the input vector is too small (i.e., this->norm()==0), * then this function returns a copy of the input. * * \sa stableNorm(), stableNormalize(), normalized() */ template <typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::stableNormalized() const { … } /** Normalizes the vector while avoid underflow and overflow * * \only_for_vectors * * This method is analogue to the normalize() method, but it reduces the risk of * underflow and overflow when computing the norm. * * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. * * \sa stableNorm(), stableNormalized(), normalize() */ template <typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::stableNormalize() { … } //---------- implementation of other norms ---------- namespace internal { template <typename Derived, int p> struct lpNorm_selector { … }; lpNorm_selector<Derived, 1>; lpNorm_selector<Derived, 2>; lpNorm_selector<Derived, Infinity>; } // end namespace internal /** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the * p-th powers of the absolute values of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, * this function returns the \f$ \ell^\infty \f$ norm, that is the maximum of the absolute values of the coefficients of * \c *this. * * In all cases, if \c *this is empty, then the value 0 is returned. * * \note For matrices, this function does not compute the <a * href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its * coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm * matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink. * * \sa norm() */ template <typename Derived> template <int p> #ifndef EIGEN_PARSED_BY_DOXYGEN EIGEN_DEVICE_FUNC inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real #else EIGEN_DEVICE_FUNC MatrixBase<Derived>::RealScalar #endif MatrixBase<Derived>::lpNorm() const { … } //---------- implementation of isOrthogonal / isUnitary ---------- /** \returns true if *this is approximately orthogonal to \a other, * within the precision given by \a prec. * * Example: \include MatrixBase_isOrthogonal.cpp * Output: \verbinclude MatrixBase_isOrthogonal.out */ template <typename Derived> template <typename OtherDerived> bool MatrixBase<Derived>::isOrthogonal(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const { … } /** \returns true if *this is approximately an unitary matrix, * within the precision given by \a prec. In the case where the \a Scalar * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. * * \note This can be used to check whether a family of vectors forms an orthonormal basis. * Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an * orthonormal basis. * * Example: \include MatrixBase_isUnitary.cpp * Output: \verbinclude MatrixBase_isUnitary.out */ template <typename Derived> bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const { … } } // end namespace Eigen #endif // EIGEN_DOT_H