chromium/third_party/eigen3/src/Eigen/src/Core/Dot.h

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008, 2010 Benoit Jacob <[email protected]>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H

// IWYU pragma: private
#include "./InternalHeaderCheck.h"

namespace Eigen {

namespace internal {

// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
// looking at the static assertions. Thus this is a trick to get better compile errors.
template <typename T, typename U,
          bool NeedToTranspose = T::IsVectorAtCompileTime && U::IsVectorAtCompileTime &&
                                 ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1) ||
                                  (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))>
struct dot_nocheck {};

dot_nocheck<T, U, true>;

}  // end namespace internal

/** \fn MatrixBase::dot
 * \returns the dot product of *this with other.
 *
 * \only_for_vectors
 *
 * \note If the scalar type is complex numbers, then this function returns the hermitian
 * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
 * second variable.
 *
 * \sa squaredNorm(), norm()
 */
template <typename Derived>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
    typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,
                                  typename internal::traits<OtherDerived>::Scalar>::ReturnType
    MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const {}

//---------- implementation of L2 norm and related functions ----------

/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the squared Frobenius norm.
 * In both cases, it consists in the sum of the square of all the matrix entries.
 * For vectors, this is also equals to the dot product of \c *this with itself.
 *
 * \sa dot(), norm(), lpNorm()
 */
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::squaredNorm() const {}

/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
 * In both cases, it consists in the square root of the sum of the square of all the matrix entries.
 * For vectors, this is also equals to the square root of the dot product of \c *this with itself.
 *
 * \sa lpNorm(), dot(), squaredNorm()
 */
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::norm() const {}

/** \returns an expression of the quotient of \c *this by its own norm.
 *
 * \warning If the input vector is too small (i.e., this->norm()==0),
 *          then this function returns a copy of the input.
 *
 * \only_for_vectors
 *
 * \sa norm(), normalize()
 */
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::normalized()
    const {}

/** Normalizes the vector, i.e. divides it by its own norm.
 *
 * \only_for_vectors
 *
 * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged.
 *
 * \sa norm(), normalized()
 */
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::normalize() {}

/** \returns an expression of the quotient of \c *this by its own norm while avoiding underflow and overflow.
 *
 * \only_for_vectors
 *
 * This method is analogue to the normalized() method, but it reduces the risk of
 * underflow and overflow when computing the norm.
 *
 * \warning If the input vector is too small (i.e., this->norm()==0),
 *          then this function returns a copy of the input.
 *
 * \sa stableNorm(), stableNormalize(), normalized()
 */
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::stableNormalized() const {}

/** Normalizes the vector while avoid underflow and overflow
 *
 * \only_for_vectors
 *
 * This method is analogue to the normalize() method, but it reduces the risk of
 * underflow and overflow when computing the norm.
 *
 * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged.
 *
 * \sa stableNorm(), stableNormalized(), normalize()
 */
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::stableNormalize() {}

//---------- implementation of other norms ----------

namespace internal {

template <typename Derived, int p>
struct lpNorm_selector {};

lpNorm_selector<Derived, 1>;

lpNorm_selector<Derived, 2>;

lpNorm_selector<Derived, Infinity>;

}  // end namespace internal

/** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the
 * p-th powers of the absolute values of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity,
 * this function returns the \f$ \ell^\infty \f$ norm, that is the maximum of the absolute values of the coefficients of
 * \c *this.
 *
 * In all cases, if \c *this is empty, then the value 0 is returned.
 *
 * \note For matrices, this function does not compute the <a
 * href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its
 * coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm
 * matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink.
 *
 * \sa norm()
 */
template <typename Derived>
template <int p>
#ifndef EIGEN_PARSED_BY_DOXYGEN
EIGEN_DEVICE_FUNC inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
#else
EIGEN_DEVICE_FUNC MatrixBase<Derived>::RealScalar
#endif
MatrixBase<Derived>::lpNorm() const {}

//---------- implementation of isOrthogonal / isUnitary ----------

/** \returns true if *this is approximately orthogonal to \a other,
 *          within the precision given by \a prec.
 *
 * Example: \include MatrixBase_isOrthogonal.cpp
 * Output: \verbinclude MatrixBase_isOrthogonal.out
 */
template <typename Derived>
template <typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const {}

/** \returns true if *this is approximately an unitary matrix,
 *          within the precision given by \a prec. In the case where the \a Scalar
 *          type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
 *
 * \note This can be used to check whether a family of vectors forms an orthonormal basis.
 *       Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
 *       orthonormal basis.
 *
 * Example: \include MatrixBase_isUnitary.cpp
 * Output: \verbinclude MatrixBase_isUnitary.out
 */
template <typename Derived>
bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const {}

}  // end namespace Eigen

#endif  // EIGEN_DOT_H