// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <[email protected]> // Copyright (C) 2006-2008 Benoit Jacob <[email protected]> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_REDUX_H #define EIGEN_REDUX_H // IWYU pragma: private #include "./InternalHeaderCheck.h" namespace Eigen { namespace internal { // TODO // * implement other kind of vectorization // * factorize code /*************************************************************************** * Part 1 : the logic deciding a strategy for vectorization and unrolling ***************************************************************************/ template <typename Func, typename Evaluator> struct redux_traits { … }; /*************************************************************************** * Part 2 : unrollers ***************************************************************************/ /*** no vectorization ***/ template <typename Func, typename Evaluator, Index Start, Index Length> struct redux_novec_unroller { … }; redux_novec_unroller<Func, Evaluator, Start, 1>; // This is actually dead code and will never be called. It is required // to prevent false warnings regarding failed inlining though // for 0 length run() will never be called at all. redux_novec_unroller<Func, Evaluator, Start, 0>; template <typename Func, typename Evaluator, Index Start, Index Length> struct redux_novec_linear_unroller { … }; redux_novec_linear_unroller<Func, Evaluator, Start, 1>; // This is actually dead code and will never be called. It is required // to prevent false warnings regarding failed inlining though // for 0 length run() will never be called at all. redux_novec_linear_unroller<Func, Evaluator, Start, 0>; /*** vectorization ***/ template <typename Func, typename Evaluator, Index Start, Index Length> struct redux_vec_unroller { … }; redux_vec_unroller<Func, Evaluator, Start, 1>; template <typename Func, typename Evaluator, Index Start, Index Length> struct redux_vec_linear_unroller { … }; redux_vec_linear_unroller<Func, Evaluator, Start, 1>; /*************************************************************************** * Part 3 : implementation of all cases ***************************************************************************/ template <typename Func, typename Evaluator, int Traversal = redux_traits<Func, Evaluator>::Traversal, int Unrolling = redux_traits<Func, Evaluator>::Unrolling> struct redux_impl; redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling>; redux_impl<Func, Evaluator, LinearTraversal, NoUnrolling>; redux_impl<Func, Evaluator, DefaultTraversal, CompleteUnrolling>; redux_impl<Func, Evaluator, LinearTraversal, CompleteUnrolling>; redux_impl<Func, Evaluator, LinearVectorizedTraversal, NoUnrolling>; // NOTE: for SliceVectorizedTraversal we simply bypass unrolling redux_impl<Func, Evaluator, SliceVectorizedTraversal, Unrolling>; redux_impl<Func, Evaluator, LinearVectorizedTraversal, CompleteUnrolling>; // evaluator adaptor template <typename XprType_> class redux_evaluator : public internal::evaluator<XprType_> { … }; } // end namespace internal /*************************************************************************** * Part 4 : public API ***************************************************************************/ /** \returns the result of a full redux operation on the whole matrix or vector using \a func * * The template parameter \a BinaryOp is the type of the functor \a func which must be * an associative operator. Both current C++98 and C++11 functor styles are handled. * * \warning the matrix must be not empty, otherwise an assertion is triggered. * * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() */ template <typename Derived> template <typename Func> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::redux( const Func& func) const { … } /** \returns the minimum of all coefficients of \c *this. * In case \c *this contains NaN, NaNPropagation determines the behavior: * NaNPropagation == PropagateFast : undefined * NaNPropagation == PropagateNaN : result is NaN * NaNPropagation == PropagateNumbers : result is minimum of elements that are not NaN * \warning the matrix must be not empty, otherwise an assertion is triggered. */ template <typename Derived> template <int NaNPropagation> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::minCoeff() const { … } /** \returns the maximum of all coefficients of \c *this. * In case \c *this contains NaN, NaNPropagation determines the behavior: * NaNPropagation == PropagateFast : undefined * NaNPropagation == PropagateNaN : result is NaN * NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN * \warning the matrix must be not empty, otherwise an assertion is triggered. */ template <typename Derived> template <int NaNPropagation> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::maxCoeff() const { … } /** \returns the sum of all coefficients of \c *this * * If \c *this is empty, then the value 0 is returned. * * \sa trace(), prod(), mean() */ template <typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::sum() const { … } /** \returns the mean of all coefficients of *this * * \sa trace(), prod(), sum() */ template <typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::mean() const { … } /** \returns the product of all coefficients of *this * * Example: \include MatrixBase_prod.cpp * Output: \verbinclude MatrixBase_prod.out * * \sa sum(), mean(), trace() */ template <typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::prod() const { … } /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. * * \c *this can be any matrix, not necessarily square. * * \sa diagonal(), sum() */ template <typename Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar MatrixBase<Derived>::trace() const { … } } // end namespace Eigen #endif // EIGEN_REDUX_H