// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob <[email protected]> // Copyright (C) 2008 Gael Guennebaud <[email protected]> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_FUZZY_H #define EIGEN_FUZZY_H // IWYU pragma: private #include "./InternalHeaderCheck.h" namespace Eigen { namespace internal { template <typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger> struct isApprox_selector { … }; isApprox_selector<Derived, OtherDerived, true>; template <typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger> struct isMuchSmallerThan_object_selector { … }; isMuchSmallerThan_object_selector<Derived, OtherDerived, true>; template <typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger> struct isMuchSmallerThan_scalar_selector { … }; isMuchSmallerThan_scalar_selector<Derived, true>; } // end namespace internal /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$ * are considered to be approximately equal within precision \f$ p \f$ if * \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f] * For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm * L2 norm). * * \note Because of the multiplicativeness of this comparison, one can't use this function * to check whether \c *this is approximately equal to the zero matrix or vector. * Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix * or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const * RealScalar&, RealScalar) instead. * * \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const */ template <typename Derived> template <typename OtherDerived> EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isApprox(const DenseBase<OtherDerived>& other, const RealScalar& prec) const { … } /** \returns \c true if the norm of \c *this is much smaller than \a other, * within the precision determined by \a prec. * * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is * considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if * \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f] * * For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason, * the value of the reference scalar \a other should come from the Hilbert-Schmidt norm * of a reference matrix of same dimensions. * * \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const */ template <typename Derived> EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isMuchSmallerThan(const typename NumTraits<Scalar>::Real& other, const RealScalar& prec) const { … } /** \returns \c true if the norm of \c *this is much smaller than the norm of \a other, * within the precision determined by \a prec. * * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is * considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if * \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f] * For matrices, the comparison is done using the Hilbert-Schmidt norm. * * \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const */ template <typename Derived> template <typename OtherDerived> EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isMuchSmallerThan(const DenseBase<OtherDerived>& other, const RealScalar& prec) const { … } } // end namespace Eigen #endif // EIGEN_FUZZY_H