chromium/third_party/pdfium/third_party/lcms/src/cmsps2.c

//---------------------------------------------------------------------------------
//
//  Little Color Management System
//  Copyright (c) 1998-2023 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//

#include "lcms2_internal.h"

// PostScript ColorRenderingDictionary and ColorSpaceArray


#define MAXPSCOLS

/*
    Implementation
    --------------

  PostScript does use XYZ as its internal PCS. But since PostScript
  interpolation tables are limited to 8 bits, I use Lab as a way to
  improve the accuracy, favoring perceptual results. So, for the creation
  of each CRD, CSA the profiles are converted to Lab via a device
  link between  profile -> Lab or Lab -> profile. The PS code necessary to
  convert Lab <-> XYZ is also included.



  Color Space Arrays (CSA)
  ==================================================================================

  In order to obtain precision, code chooses between three ways to implement
  the device -> XYZ transform. These cases identifies monochrome profiles (often
  implemented as a set of curves), matrix-shaper and Pipeline-based.

  Monochrome
  -----------

  This is implemented as /CIEBasedA CSA. The prelinearization curve is
  placed into /DecodeA section, and matrix equals to D50. Since here is
  no interpolation tables, I do the conversion directly to XYZ

  NOTE: CLUT-based monochrome profiles are NOT supported. So, cmsFLAGS_MATRIXINPUT
  flag is forced on such profiles.

    [ /CIEBasedA
      <<
            /DecodeA { transfer function } bind
            /MatrixA [D50]
            /RangeLMN [ 0.0 cmsD50X 0.0 cmsD50Y 0.0 cmsD50Z ]
            /WhitePoint [D50]
            /BlackPoint [BP]
            /RenderingIntent (intent)
      >>
    ]

   On simpler profiles, the PCS is already XYZ, so no conversion is required.


   Matrix-shaper based
   -------------------

   This is implemented both with /CIEBasedABC or /CIEBasedDEF depending on the
   profile implementation. Since here there are no interpolation tables, I do
   the conversion directly to XYZ



    [ /CIEBasedABC
            <<
                /DecodeABC [ {transfer1} {transfer2} {transfer3} ]
                /MatrixABC [Matrix]
                /RangeLMN [ 0.0 cmsD50X 0.0 cmsD50Y 0.0 cmsD50Z ]
                /DecodeLMN [ { / 2} dup dup ]
                /WhitePoint [D50]
                /BlackPoint [BP]
                /RenderingIntent (intent)
            >>
    ]


    CLUT based
    ----------

     Lab is used in such cases.

    [ /CIEBasedDEF
            <<
            /DecodeDEF [ <prelinearization> ]
            /Table [ p p p [<...>]]
            /RangeABC [ 0 1 0 1 0 1]
            /DecodeABC[ <postlinearization> ]
            /RangeLMN [ -0.236 1.254 0 1 -0.635 1.640 ]
               % -128/500 1+127/500 0 1  -127/200 1+128/200
            /MatrixABC [ 1 1 1 1 0 0 0 0 -1]
            /WhitePoint [D50]
            /BlackPoint [BP]
            /RenderingIntent (intent)
    ]


  Color Rendering Dictionaries (CRD)
  ==================================
  These are always implemented as CLUT, and always are using Lab. Since CRD are expected to
  be used as resources, the code adds the definition as well.

  <<
    /ColorRenderingType 1
    /WhitePoint [ D50 ]
    /BlackPoint [BP]
    /MatrixPQR [ Bradford ]
    /RangePQR [-0.125 1.375 -0.125 1.375 -0.125 1.375 ]
    /TransformPQR [
    {4 index 3 get div 2 index 3 get mul exch pop exch pop exch pop exch pop } bind
    {4 index 4 get div 2 index 4 get mul exch pop exch pop exch pop exch pop } bind
    {4 index 5 get div 2 index 5 get mul exch pop exch pop exch pop exch pop } bind
    ]
    /MatrixABC <...>
    /EncodeABC <...>
    /RangeABC  <.. used for  XYZ -> Lab>
    /EncodeLMN
    /RenderTable [ p p p [<...>]]

    /RenderingIntent (Perceptual)
  >>
  /Current exch /ColorRendering defineresource pop


  The following stages are used to convert from XYZ to Lab
  --------------------------------------------------------

  Input is given at LMN stage on X, Y, Z

  Encode LMN gives us f(X/Xn), f(Y/Yn), f(Z/Zn)

  /EncodeLMN [

    { 0.964200  div dup 0.008856 le {7.787 mul 16 116 div add}{1 3 div exp} ifelse } bind
    { 1.000000  div dup 0.008856 le {7.787 mul 16 116 div add}{1 3 div exp} ifelse } bind
    { 0.824900  div dup 0.008856 le {7.787 mul 16 116 div add}{1 3 div exp} ifelse } bind

    ]


  MatrixABC is used to compute f(Y/Yn), f(X/Xn) - f(Y/Yn), f(Y/Yn) - f(Z/Zn)

  | 0  1  0|
  | 1 -1  0|
  | 0  1 -1|

  /MatrixABC [ 0 1 0 1 -1 1 0 0 -1 ]

 EncodeABC finally gives Lab values.

  /EncodeABC [
    { 116 mul  16 sub 100 div  } bind
    { 500 mul 128 add 255 div  } bind
    { 200 mul 128 add 255 div  } bind
    ]

  The following stages are used to convert Lab to XYZ
  ----------------------------------------------------

    /RangeABC [ 0 1 0 1 0 1]
    /DecodeABC [ { 100 mul 16 add 116 div } bind
                 { 255 mul 128 sub 500 div } bind
                 { 255 mul 128 sub 200 div } bind
               ]

    /MatrixABC [ 1 1 1 1 0 0 0 0 -1]
    /DecodeLMN [
                {dup 6 29 div ge {dup dup mul mul} {4 29 div sub 108 841 div mul} ifelse 0.964200 mul} bind
                {dup 6 29 div ge {dup dup mul mul} {4 29 div sub 108 841 div mul} ifelse } bind
                {dup 6 29 div ge {dup dup mul mul} {4 29 div sub 108 841 div mul} ifelse 0.824900 mul} bind
                ]


*/

/*

 PostScript algorithms discussion.
 =========================================================================================================

  1D interpolation algorithm


  1D interpolation (float)
  ------------------------

    val2 = Domain * Value;

    cell0 = (int) floor(val2);
    cell1 = (int) ceil(val2);

    rest = val2 - cell0;

    y0 = LutTable[cell0] ;
    y1 = LutTable[cell1] ;

    y = y0 + (y1 - y0) * rest;



  PostScript code                   Stack
  ================================================

  {                                 % v
    <check 0..1.0>
    [array]                         % v tab
    dup                             % v tab tab
    length 1 sub                    % v tab dom

    3 -1 roll                       % tab dom v

    mul                             % tab val2
    dup                             % tab val2 val2
    dup                             % tab val2 val2 val2
    floor cvi                       % tab val2 val2 cell0
    exch                            % tab val2 cell0 val2
    ceiling cvi                     % tab val2 cell0 cell1

    3 index                         % tab val2 cell0 cell1 tab
    exch                            % tab val2 cell0 tab cell1
    get                             % tab val2 cell0 y1

    4 -1 roll                       % val2 cell0 y1 tab
    3 -1 roll                       % val2 y1 tab cell0
    get                             % val2 y1 y0

    dup                             % val2 y1 y0 y0
    3 1 roll                        % val2 y0 y1 y0

    sub                             % val2 y0 (y1-y0)
    3 -1 roll                       % y0 (y1-y0) val2
    dup                             % y0 (y1-y0) val2 val2
    floor cvi                       % y0 (y1-y0) val2 floor(val2)
    sub                             % y0 (y1-y0) rest
    mul                             % y0 t1
    add                             % y
    65535 div                       % result

  } bind


*/


// This struct holds the memory block currently being write
cmsPsSamplerCargo;

static int _cmsPSActualColumn =;


// Convert to byte
static
cmsUInt8Number Word2Byte(cmsUInt16Number w)
{}


// Write a cooked byte
static
void WriteByte(cmsIOHANDLER* m, cmsUInt8Number b)
{}

// ----------------------------------------------------------------- PostScript generation


// Removes offending carriage returns

static
char* RemoveCR(const char* txt)
{}

static
void EmitHeader(cmsIOHANDLER* m, const char* Title, cmsHPROFILE hProfile)
{}


// Emits White & Black point. White point is always D50, Black point is the device
// Black point adapted to D50.

static
void EmitWhiteBlackD50(cmsIOHANDLER* m, cmsCIEXYZ* BlackPoint)
{}


static
void EmitRangeCheck(cmsIOHANDLER* m)
{}

// Does write the intent

static
void EmitIntent(cmsIOHANDLER* m, cmsUInt32Number RenderingIntent)
{}

//
//  Convert L* to Y
//
//      Y = Yn*[ (L* + 16) / 116] ^ 3   if (L*) >= 6 / 29
//        = Yn*( L* / 116) / 7.787      if (L*) < 6 / 29
//

// Lab -> XYZ, see the discussion above

static
void EmitLab2XYZ(cmsIOHANDLER* m)
{}

static
void EmitSafeGuardBegin(cmsIOHANDLER* m, const char* name)
{}

static
void EmitSafeGuardEnd(cmsIOHANDLER* m, const char* name, int depth)
{}

// Outputs a table of words. It does use 16 bits

static
void Emit1Gamma(cmsIOHANDLER* m, cmsToneCurve* Table, const char* name)
{}


// Compare gamma table

static
cmsBool GammaTableEquals(cmsUInt16Number* g1, cmsUInt16Number* g2, cmsUInt32Number nG1, cmsUInt32Number nG2)
{}


// Does write a set of gamma curves

static
void EmitNGamma(cmsIOHANDLER* m, cmsUInt32Number n, cmsToneCurve* g[], const char* nameprefix)
{}


// Following code dumps a LUT onto memory stream


// This is the sampler. Intended to work in SAMPLER_INSPECT mode,
// that is, the callback will be called for each knot with
//
//          In[]  The grid location coordinates, normalized to 0..ffff
//          Out[] The Pipeline values, normalized to 0..ffff
//
//  Returning a value other than 0 does terminate the sampling process
//
//  Each row contains Pipeline values for all but first component. So, I
//  detect row changing by keeping a copy of last value of first
//  component. -1 is used to mark beginning of whole block.

static
int OutputValueSampler(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER void* Cargo)
{}

// Writes a Pipeline on memstream. Could be 8 or 16 bits based

static
void WriteCLUT(cmsIOHANDLER* m, cmsStage* mpe, const char* PreMaj,
                                               const char* PostMaj,
                                               const char* PreMin,
                                               const char* PostMin,
                                               int FixWhite,
                                               cmsColorSpaceSignature ColorSpace)
{}


// Dumps CIEBasedA Color Space Array

static
int EmitCIEBasedA(cmsIOHANDLER* m, cmsToneCurve* Curve, cmsCIEXYZ* BlackPoint)
{}


// Dumps CIEBasedABC Color Space Array

static
int EmitCIEBasedABC(cmsIOHANDLER* m, cmsFloat64Number* Matrix, cmsToneCurve** CurveSet, cmsCIEXYZ* BlackPoint)
{}


static
int EmitCIEBasedDEF(cmsIOHANDLER* m, cmsPipeline* Pipeline, cmsUInt32Number Intent, cmsCIEXYZ* BlackPoint)
{}

// Generates a curve from a gray profile

static
cmsToneCurve* ExtractGray2Y(cmsContext ContextID, cmsHPROFILE hProfile, cmsUInt32Number Intent)
{}



// Because PostScript has only 8 bits in /Table, we should use
// a more perceptually uniform space... I do choose Lab.

static
int WriteInputLUT(cmsIOHANDLER* m, cmsHPROFILE hProfile, cmsUInt32Number Intent, cmsUInt32Number dwFlags)
{}

static
cmsFloat64Number* GetPtrToMatrix(const cmsStage* mpe)
{}


// Does create CSA based on matrix-shaper. Allowed types are gray and RGB based
static
int WriteInputMatrixShaper(cmsIOHANDLER* m, cmsHPROFILE hProfile, cmsStage* Matrix, cmsStage* Shaper)
{}



// Creates a PostScript color list from a named profile data.
// This is a HP extension, and it works in Lab instead of XYZ

static
int WriteNamedColorCSA(cmsIOHANDLER* m, cmsHPROFILE hNamedColor, cmsUInt32Number Intent)
{}


// Does create a Color Space Array on XYZ colorspace for PostScript usage
static
cmsUInt32Number GenerateCSA(cmsContext ContextID,
                            cmsHPROFILE hProfile,
                            cmsUInt32Number Intent,
                            cmsUInt32Number dwFlags,
                            cmsIOHANDLER* mem)
{}

// ------------------------------------------------------ Color Rendering Dictionary (CRD)



/*

  Black point compensation plus chromatic adaptation:

  Step 1 - Chromatic adaptation
  =============================

          WPout
    X = ------- PQR
          Wpin

  Step 2 - Black point compensation
  =================================

          (WPout - BPout)*X - WPout*(BPin - BPout)
    out = ---------------------------------------
                        WPout - BPin


  Algorithm discussion
  ====================

  TransformPQR(WPin, BPin, WPout, BPout, PQR)

  Wpin,etc= { Xws Yws Zws Pws Qws Rws }


  Algorithm             Stack 0...n
  ===========================================================
                        PQR BPout WPout BPin WPin
  4 index 3 get         WPin PQR BPout WPout BPin WPin
  div                   (PQR/WPin) BPout WPout BPin WPin
  2 index 3 get         WPout (PQR/WPin) BPout WPout BPin WPin
  mult                  WPout*(PQR/WPin) BPout WPout BPin WPin

  2 index 3 get         WPout WPout*(PQR/WPin) BPout WPout BPin WPin
  2 index 3 get         BPout WPout WPout*(PQR/WPin) BPout WPout BPin WPin
  sub                   (WPout-BPout) WPout*(PQR/WPin) BPout WPout BPin WPin
  mult                  (WPout-BPout)* WPout*(PQR/WPin) BPout WPout BPin WPin

  2 index 3 get         WPout (BPout-WPout)* WPout*(PQR/WPin) BPout WPout BPin WPin
  4 index 3 get         BPin WPout (BPout-WPout)* WPout*(PQR/WPin) BPout WPout BPin WPin
  3 index 3 get         BPout BPin WPout (BPout-WPout)* WPout*(PQR/WPin) BPout WPout BPin WPin

  sub                   (BPin-BPout) WPout (BPout-WPout)* WPout*(PQR/WPin) BPout WPout BPin WPin
  mult                  (BPin-BPout)*WPout (BPout-WPout)* WPout*(PQR/WPin) BPout WPout BPin WPin
  sub                   (BPout-WPout)* WPout*(PQR/WPin)-(BPin-BPout)*WPout BPout WPout BPin WPin

  3 index 3 get         BPin (BPout-WPout)* WPout*(PQR/WPin)-(BPin-BPout)*WPout BPout WPout BPin WPin
  3 index 3 get         WPout BPin (BPout-WPout)* WPout*(PQR/WPin)-(BPin-BPout)*WPout BPout WPout BPin WPin
  exch
  sub                   (WPout-BPin) (BPout-WPout)* WPout*(PQR/WPin)-(BPin-BPout)*WPout BPout WPout BPin WPin
  div

  exch pop
  exch pop
  exch pop
  exch pop

*/


static
void EmitPQRStage(cmsIOHANDLER* m, cmsHPROFILE hProfile, int DoBPC, int lIsAbsolute)
{}


static
void EmitXYZ2Lab(cmsIOHANDLER* m)
{}

// Due to impedance mismatch between XYZ and almost all RGB and CMYK spaces
// I choose to dump LUTS in Lab instead of XYZ. There is still a lot of wasted
// space on 3D CLUT, but since space seems not to be a problem here, 33 points
// would give a reasonable accuracy. Note also that CRD tables must operate in
// 8 bits.

static
int WriteOutputLUT(cmsIOHANDLER* m, cmsHPROFILE hProfile, cmsUInt32Number Intent, cmsUInt32Number dwFlags)
{}


// Builds a ASCII string containing colorant list in 0..1.0 range
static
void BuildColorantList(char *Colorant, cmsUInt32Number nColorant, cmsUInt16Number Out[])
{}


// Creates a PostScript color list from a named profile data.
// This is a HP extension.

static
int WriteNamedColorCRD(cmsIOHANDLER* m, cmsHPROFILE hNamedColor, cmsUInt32Number Intent, cmsUInt32Number dwFlags)
{}



// This one does create a Color Rendering Dictionary.
// CRD are always LUT-Based, no matter if profile is
// implemented as matrix-shaper.

static
cmsUInt32Number  GenerateCRD(cmsContext ContextID,
                             cmsHPROFILE hProfile,
                             cmsUInt32Number Intent, cmsUInt32Number dwFlags,
                             cmsIOHANDLER* mem)
{}




cmsUInt32Number CMSEXPORT cmsGetPostScriptColorResource(cmsContext ContextID,
                                                               cmsPSResourceType Type,
                                                               cmsHPROFILE hProfile,
                                                               cmsUInt32Number Intent,
                                                               cmsUInt32Number dwFlags,
                                                               cmsIOHANDLER* io)
{}



cmsUInt32Number CMSEXPORT cmsGetPostScriptCRD(cmsContext ContextID,
                              cmsHPROFILE hProfile,
                              cmsUInt32Number Intent, cmsUInt32Number dwFlags,
                              void* Buffer, cmsUInt32Number dwBufferLen)
{}



// Does create a Color Space Array on XYZ colorspace for PostScript usage
cmsUInt32Number CMSEXPORT cmsGetPostScriptCSA(cmsContext ContextID,
                                              cmsHPROFILE hProfile,
                                              cmsUInt32Number Intent,
                                              cmsUInt32Number dwFlags,
                                              void* Buffer,
                                              cmsUInt32Number dwBufferLen)
{}