// Copyright (c) 2018 Google LLC. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASI, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ #define SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ #include <algorithm> #include <memory> #include <string> #include <vector> #include "source/opt/tree_iterator.h" namespace spvtools { namespace opt { class Loop; class ScalarEvolutionAnalysis; class SEConstantNode; class SERecurrentNode; class SEAddNode; class SEMultiplyNode; class SENegative; class SEValueUnknown; class SECantCompute; // Abstract class representing a node in the scalar evolution DAG. Each node // contains a vector of pointers to its children and each subclass of SENode // implements GetType and an As method to allow casting. SENodes can be hashed // using the SENodeHash functor. The vector of children is sorted when a node is // added. This is important as it allows the hash of X+Y to be the same as Y+X. class SENode { … }; // clang-format on // Function object to handle the hashing of SENodes. Hashing algorithm hashes // the type (as a string), the literal value of any constants, and the child // pointers which are assumed to be unique. struct SENodeHash { … }; // A node representing a constant integer. class SEConstantNode : public SENode { … }; // A node representing a recurrent expression in the code. A recurrent // expression is an expression whose value can be expressed as a linear // expression of the loop iterations. Such as an induction variable. The actual // value of a recurrent expression is coefficent_ * iteration + offset_, hence // an induction variable i=0, i++ becomes a recurrent expression with an offset // of zero and a coefficient of one. class SERecurrentNode : public SENode { … }; // A node representing an addition operation between child nodes. class SEAddNode : public SENode { … }; // A node representing a multiply operation between child nodes. class SEMultiplyNode : public SENode { … }; // A node representing a unary negative operation. class SENegative : public SENode { … }; // A node representing a value which we do not know the value of, such as a load // instruction. class SEValueUnknown : public SENode { … }; // A node which we cannot reason about at all. class SECantCompute : public SENode { … }; } // namespace opt } // namespace spvtools #endif // SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_