/* Copyright 2022 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_REDUCE_UTILS_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_REDUCE_UTILS_H_ #include <stdint.h> #include <algorithm> #include <cstring> namespace tflite { namespace reduce_utils { inline void RemoveSize1Dims(int* shape_out, int& out_num_dims, int* axis_out, int& out_num_axis) { … } // This method parses the input 'axis' to remove duplicates, handle negative // values and remove redundant dimensions. It returns a valid 'axis_out' and // 'shape_out' contains the flattened input shape. 'out_num_dims' contains the // reduced number of dimensions. inline bool ResolveAxis(const int num_dims, const int* axis, const int64_t num_axis, int* axis_out, int& out_num_axis, const int* shape_in, int* shape_out, int& out_num_dims) { … } } // namespace reduce_utils } // namespace tflite #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_REDUCE_UTILS_H_