#include <assert.h>
#include <inttypes.h>
#include <stddef.h>
#include <stdint.h>
#include "xnnpack.h"
#include "xnnpack/common.h"
#include "xnnpack/log.h"
#include "xnnpack/node-type.h"
#include "xnnpack/operator-type.h"
#include "xnnpack/operator.h"
#include "xnnpack/requantization.h"
#include "xnnpack/subgraph-validation.h"
#include "xnnpack/subgraph.h"
#include "pthreadpool.h"
static enum xnn_status create_convolution_operator(
const struct xnn_node* node,
const struct xnn_value* values,
size_t num_values,
struct xnn_operator_data* opdata,
struct xnn_code_cache* code_cache,
xnn_weights_cache_t weights_cache)
{ … }
static enum xnn_status reshape_convolution_operator(
struct xnn_operator_data* opdata,
struct xnn_value* values,
size_t num_values,
pthreadpool_t threadpool)
{ … }
static enum xnn_status setup_convolution_operator(
const struct xnn_operator_data* opdata,
const struct xnn_value* values,
size_t num_values,
pthreadpool_t threadpool)
{ … }
static inline enum xnn_compute_type validate_datatypes_with_bias(
enum xnn_datatype input_datatype,
enum xnn_datatype filter_datatype,
enum xnn_datatype bias_datatype,
enum xnn_datatype output_datatype)
{ … }
static inline enum xnn_compute_type validate_datatypes_without_bias(
enum xnn_datatype input_datatype,
enum xnn_datatype filter_datatype,
enum xnn_datatype output_datatype)
{ … }
enum xnn_status xnn_define_depthwise_convolution_2d(
xnn_subgraph_t subgraph,
uint32_t input_padding_top,
uint32_t input_padding_right,
uint32_t input_padding_bottom,
uint32_t input_padding_left,
uint32_t kernel_height,
uint32_t kernel_width,
uint32_t subsampling_height,
uint32_t subsampling_width,
uint32_t dilation_height,
uint32_t dilation_width,
uint32_t depth_multiplier,
size_t input_channels,
float output_min,
float output_max,
uint32_t input_id,
uint32_t filter_id,
uint32_t bias_id,
uint32_t output_id,
uint32_t flags)
{
enum xnn_status status;
if ((status = xnn_subgraph_check_xnnpack_initialized(xnn_node_type_depthwise_convolution_2d)) != xnn_status_success) {
return status;
}
if (kernel_width == 0 || kernel_height == 0) {
xnn_log_error(
"failed to define %s operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), kernel_width, kernel_height);
return xnn_status_invalid_parameter;
}
if (subsampling_width == 0 || subsampling_height == 0) {
xnn_log_error(
"failed to define %s operator with %" PRIu32 "x%" PRIu32 " subsampling: subsampling dimensions must be non-zero",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), subsampling_width, subsampling_height);
return xnn_status_invalid_parameter;
}
if (dilation_width == 0 || dilation_height == 0) {
xnn_log_error(
"failed to define %s operator with %" PRIu32 "x%" PRIu32 " dilation: dilation dimensions must be non-zero",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), dilation_width, dilation_height);
return xnn_status_invalid_parameter;
}
if (depth_multiplier == 0) {
xnn_log_error(
"failed to define %s operator with %" PRIu32 " depth multiplier: depth multiplier must be non-zero",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), depth_multiplier);
return xnn_status_invalid_parameter;
}
if (input_channels == 0) {
xnn_log_error(
"failed to define %s operator with %zu input channels: number of channels must be non-zero",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), input_channels);
return xnn_status_invalid_parameter;
}
status = xnn_subgraph_check_output_min_max(xnn_node_type_depthwise_convolution_2d, output_min, output_max);
if (status != xnn_status_success) {
return status;
}
const uint32_t supported_flags = XNN_FLAG_TENSORFLOW_SAME_PADDING | XNN_FLAG_TRANSIENT_INDIRECTION_BUFFER;
const uint32_t invalid_flags = flags & ~supported_flags;
if (invalid_flags != 0) {
xnn_log_error(
"failed to define %s operator with 0x%08" PRIx32 " flags: invalid flags 0x%08" PRIx32,
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), flags, invalid_flags);
return xnn_status_invalid_parameter;
}
const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0;
if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0 && any_padding) {
xnn_log_error(
"failed to define %s operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: "
"TensorFlow SAME padding can't be combined with explicit padding specification",
xnn_node_type_to_string(xnn_node_type_convolution_2d),
input_padding_top, input_padding_left, input_padding_bottom, input_padding_right);
return xnn_status_invalid_parameter;
}
if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0 && (subsampling_height | subsampling_width) == 1) {
flags &= ~XNN_FLAG_TENSORFLOW_SAME_PADDING;
const uint32_t padding_height = (kernel_height - 1) * dilation_height;
const uint32_t padding_width = (kernel_width - 1) * dilation_width;
input_padding_left = padding_width / 2;
input_padding_top = padding_height / 2;
input_padding_right = padding_width - input_padding_left;
input_padding_bottom = padding_height - input_padding_top;
}
if ((status = xnn_subgraph_check_input_node_id(xnn_node_type_depthwise_convolution_2d, input_id, subgraph->num_values)) !=
xnn_status_success) {
return status;
}
const struct xnn_value* input_value = &subgraph->values[input_id];
status = xnn_subgraph_check_input_type_dense(xnn_node_type_depthwise_convolution_2d, input_id, input_value);
if (status != xnn_status_success) {
return status;
}
switch (input_value->datatype) {
case xnn_datatype_fp16:
case xnn_datatype_fp32:
case xnn_datatype_qint8:
case xnn_datatype_quint8:
break;
default:
xnn_log_error(
"failed to define %s operator with input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), input_id,
xnn_datatype_to_string(input_value->datatype), input_value->datatype);
return xnn_status_invalid_parameter;
}
if (filter_id >= subgraph->num_values) {
xnn_log_error(
"failed to define %s operator with filter ID #%" PRIu32 ": invalid Value ID",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), filter_id);
return xnn_status_invalid_parameter;
}
const struct xnn_value* filter_value = &subgraph->values[filter_id];
if (filter_value->type != xnn_value_type_dense_tensor) {
xnn_log_error(
"failed to define %s operator with filter ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), filter_id, filter_value->type);
return xnn_status_invalid_parameter;
}
if (filter_value->data == NULL) {
xnn_log_error(
"failed to define %s operator with filter ID #%" PRIu32 ": non-static Value",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), filter_id);
return xnn_status_invalid_parameter;
}
switch (filter_value->datatype) {
case xnn_datatype_fp16:
case xnn_datatype_fp32:
break;
case xnn_datatype_qint8:
if (filter_value->quantization.zero_point != 0) {
xnn_log_error(
"failed to define %s operator with filter ID #%" PRIu32 ": unsupported quantization zero point %" PRId32 " for datatype %s",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), filter_id,
filter_value->quantization.zero_point, xnn_datatype_to_string(filter_value->datatype));
return xnn_status_invalid_parameter;
}
break;
case xnn_datatype_qcint8:
break;
case xnn_datatype_quint8:
break;
default:
xnn_log_error(
"failed to define %s operator with filter ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), filter_id,
xnn_datatype_to_string(filter_value->datatype), filter_value->datatype);
return xnn_status_invalid_parameter;
}
const struct xnn_value* bias_value = NULL;
if (bias_id != XNN_INVALID_VALUE_ID) {
if (bias_id >= subgraph->num_values) {
xnn_log_error(
"failed to define %s operator with bias ID #%" PRIu32 ": invalid Value ID",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), bias_id);
return xnn_status_invalid_parameter;
}
bias_value = &subgraph->values[bias_id];
if (bias_value->type != xnn_value_type_dense_tensor) {
xnn_log_error(
"failed to define %s operator with bias ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), bias_id, bias_value->type);
return xnn_status_invalid_parameter;
}
if (bias_value->data == NULL) {
xnn_log_error(
"failed to define %s operator with bias ID #%" PRIu32 ": non-static Value",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), bias_id);
return xnn_status_invalid_parameter;
}
switch (bias_value->datatype) {
case xnn_datatype_fp16:
case xnn_datatype_fp32:
case xnn_datatype_qint32:
case xnn_datatype_qcint32:
break;
default:
xnn_log_error(
"failed to define %s operator with bias ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), bias_id,
xnn_datatype_to_string(bias_value->datatype), bias_value->datatype);
return xnn_status_invalid_parameter;
}
}
status = xnn_subgraph_check_output_node_id(xnn_node_type_depthwise_convolution_2d, output_id, subgraph->num_values);
if (status != xnn_status_success) {
return status;
}
const struct xnn_value* output_value = &subgraph->values[output_id];
status = xnn_subgraph_check_output_type_dense(xnn_node_type_depthwise_convolution_2d, output_id, output_value);
if (status != xnn_status_success) {
return status;
}
switch (output_value->datatype) {
case xnn_datatype_fp16:
case xnn_datatype_fp32:
case xnn_datatype_qint8:
case xnn_datatype_quint8:
break;
default:
xnn_log_error(
"failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), output_id,
xnn_datatype_to_string(output_value->datatype), output_value->datatype);
return xnn_status_invalid_parameter;
}
enum xnn_compute_type compute_type = xnn_compute_type_invalid;
if (bias_value != NULL) {
compute_type = validate_datatypes_with_bias(
input_value->datatype, filter_value->datatype, bias_value->datatype, output_value->datatype);
if (compute_type == xnn_compute_type_invalid) {
xnn_log_error(
"failed to define %s operator with input ID #%" PRIu32 ", filter ID #%" PRIu32 ", bias ID #%" PRIu32 ", and output ID #%" PRIu32
": mismatching datatypes across input (%s), filter (%s), bias (%s), and output (%s)",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), input_id, filter_id, bias_id, output_id,
xnn_datatype_to_string(input_value->datatype),
xnn_datatype_to_string(filter_value->datatype),
xnn_datatype_to_string(bias_value->datatype),
xnn_datatype_to_string(output_value->datatype));
return xnn_status_invalid_parameter;
}
} else {
compute_type = validate_datatypes_without_bias(input_value->datatype, filter_value->datatype, output_value->datatype);
if (compute_type == xnn_compute_type_invalid) {
xnn_log_error(
"failed to define %s operator with input ID #%" PRIu32 ", filter ID #%" PRIu32 ", and output ID #%" PRIu32
": mismatching datatypes across input (%s), filter (%s), and output (%s)",
xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), input_id, filter_id, output_id,
xnn_datatype_to_string(input_value->datatype),
xnn_datatype_to_string(filter_value->datatype),
xnn_datatype_to_string(output_value->datatype));
return xnn_status_invalid_parameter;
}
}
if (filter_value->datatype == xnn_datatype_qcint8) {
if (filter_value->quantization.channel_dimension != filter_value->shape.num_dims - 1) {
xnn_log_error(
"failed to define %s operator with filter ID #%" PRIu32 ": invalid channel dimension %zu",
xnn_node_type_to_string(xnn_node_type_convolution_2d), input_id, filter_value->quantization.channel_dimension);
return xnn_status_invalid_parameter;
}
if (bias_value != NULL) {
assert(bias_value->datatype == xnn_datatype_qcint32);
if (bias_value->quantization.channel_dimension != 0) {
xnn_log_error(
"failed to define %s operator with bias ID #%" PRIu32 ": invalid channel dimension %zu",
xnn_node_type_to_string(xnn_node_type_convolution_2d), bias_id, bias_value->quantization.channel_dimension);
return xnn_status_invalid_parameter;
}
}
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = xnn_node_type_depthwise_convolution_2d;
node->compute_type = compute_type;
node->params.depthwise_convolution_2d.input_padding_top = input_padding_top;
node->params.depthwise_convolution_2d.input_padding_right = input_padding_right;
node->params.depthwise_convolution_2d.input_padding_bottom = input_padding_bottom;
node->params.depthwise_convolution_2d.input_padding_left = input_padding_left;
node->params.depthwise_convolution_2d.kernel_height = kernel_height;
node->params.depthwise_convolution_2d.kernel_width = kernel_width;
node->params.depthwise_convolution_2d.subsampling_height = subsampling_height;
node->params.depthwise_convolution_2d.subsampling_width = subsampling_width;
node->params.depthwise_convolution_2d.dilation_height = dilation_height;
node->params.depthwise_convolution_2d.dilation_width = dilation_width;
node->params.depthwise_convolution_2d.depth_multiplier = depth_multiplier;
node->params.depthwise_convolution_2d.input_channels = input_channels;
node->activation.output_min = output_min;
node->activation.output_max = output_max;
node->num_inputs = 2 + (size_t) (bias_id != XNN_INVALID_VALUE_ID);
node->inputs[0] = input_id;
node->inputs[1] = filter_id;
node->inputs[2] = bias_id;
node->num_outputs = 1;
node->outputs[0] = output_id;
node->flags = flags;
node->create = create_convolution_operator;
node->reshape = reshape_convolution_operator;
node->setup = setup_convolution_operator;
return xnn_status_success;
};