// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_BASE_BITS_H_ #define V8_BASE_BITS_H_ #include <stdint.h> #include <type_traits> #include "src/base/base-export.h" #include "src/base/macros.h" #if V8_CC_MSVC #include <intrin.h> #endif #if V8_OS_WIN32 #include "src/base/win32-headers.h" #endif namespace v8 { namespace base { namespace bits { // CountPopulation(value) returns the number of bits set in |value|. template <typename T> constexpr inline typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8, unsigned>::type CountPopulation(T value) { … } // ReverseBits(value) returns |value| in reverse bit order. template <typename T> T ReverseBits(T value) { … } // ReverseBytes(value) returns |value| in reverse byte order. template <typename T> T ReverseBytes(T value) { … } template <class T> inline constexpr std::make_unsigned_t<T> Unsigned(T value) { … } template <class T> inline constexpr std::make_signed_t<T> Signed(T value) { … } // CountLeadingZeros(value) returns the number of zero bits following the most // significant 1 bit in |value| if |value| is non-zero, otherwise it returns // {sizeof(T) * 8}. template <typename T, unsigned bits = sizeof(T) * 8> inline constexpr typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8, unsigned>::type CountLeadingZeros(T value) { … } inline constexpr unsigned CountLeadingZeros32(uint32_t value) { … } inline constexpr unsigned CountLeadingZeros64(uint64_t value) { … } // The number of leading zeros for a positive number, // the number of leading ones for a negative number. template <class T> constexpr unsigned CountLeadingSignBits(T value) { … } // CountTrailingZeros(value) returns the number of zero bits preceding the // least significant 1 bit in |value| if |value| is non-zero, otherwise it // returns {sizeof(T) * 8}. // See CountTrailingZerosNonZero for an optimized version for the case that // |value| is guaranteed to be non-zero. template <typename T, unsigned bits = sizeof(T) * 8> inline constexpr typename std::enable_if<std::is_integral<T>::value && sizeof(T) <= 8, unsigned>::type CountTrailingZeros(T value) { … } inline constexpr unsigned CountTrailingZeros32(uint32_t value) { … } inline constexpr unsigned CountTrailingZeros64(uint64_t value) { … } // CountTrailingZerosNonZero(value) returns the number of zero bits preceding // the least significant 1 bit in |value| if |value| is non-zero, otherwise the // behavior is undefined. // See CountTrailingZeros for an alternative version that allows |value| == 0. template <typename T, unsigned bits = sizeof(T) * 8> inline constexpr typename std::enable_if<std::is_integral<T>::value && sizeof(T) <= 8, unsigned>::type CountTrailingZerosNonZero(T value) { … } // Returns true iff |value| is a power of 2. template <typename T, typename = typename std::enable_if<std::is_integral<T>::value || std::is_enum<T>::value>::type> constexpr inline bool IsPowerOfTwo(T value) { … } // Identical to {CountTrailingZeros}, but only works for powers of 2. template <typename T, typename = typename std::enable_if<std::is_integral<T>::value>::type> inline constexpr int WhichPowerOfTwo(T value) { … } // RoundUpToPowerOfTwo32(value) returns the smallest power of two which is // greater than or equal to |value|. If you pass in a |value| that is already a // power of two, it is returned as is. |value| must be less than or equal to // 0x80000000u. Uses computation based on leading zeros if we have compiler // support for that. Falls back to the implementation from "Hacker's Delight" by // Henry S. Warren, Jr., figure 3-3, page 48, where the function is called clp2. V8_BASE_EXPORT constexpr uint32_t RoundUpToPowerOfTwo32(uint32_t value) { … } // Same for 64 bit integers. |value| must be <= 2^63 V8_BASE_EXPORT constexpr uint64_t RoundUpToPowerOfTwo64(uint64_t value) { … } // Same for size_t integers. inline constexpr size_t RoundUpToPowerOfTwo(size_t value) { … } // RoundDownToPowerOfTwo32(value) returns the greatest power of two which is // less than or equal to |value|. If you pass in a |value| that is already a // power of two, it is returned as is. inline uint32_t RoundDownToPowerOfTwo32(uint32_t value) { … } // Precondition: 0 <= shift < 32 inline constexpr uint32_t RotateRight32(uint32_t value, uint32_t shift) { … } // Precondition: 0 <= shift < 32 inline constexpr uint32_t RotateLeft32(uint32_t value, uint32_t shift) { … } // Precondition: 0 <= shift < 64 inline constexpr uint64_t RotateRight64(uint64_t value, uint64_t shift) { … } // Precondition: 0 <= shift < 64 inline constexpr uint64_t RotateLeft64(uint64_t value, uint64_t shift) { … } // SignedAddOverflow32(lhs,rhs,val) performs a signed summation of |lhs| and // |rhs| and stores the result into the variable pointed to by |val| and // returns true if the signed summation resulted in an overflow. inline bool SignedAddOverflow32(int32_t lhs, int32_t rhs, int32_t* val) { … } // SignedSubOverflow32(lhs,rhs,val) performs a signed subtraction of |lhs| and // |rhs| and stores the result into the variable pointed to by |val| and // returns true if the signed subtraction resulted in an overflow. inline bool SignedSubOverflow32(int32_t lhs, int32_t rhs, int32_t* val) { … } // SignedMulOverflow32(lhs,rhs,val) performs a signed multiplication of |lhs| // and |rhs| and stores the result into the variable pointed to by |val| and // returns true if the signed multiplication resulted in an overflow. inline bool SignedMulOverflow32(int32_t lhs, int32_t rhs, int32_t* val) { … } // SignedAddOverflow64(lhs,rhs,val) performs a signed summation of |lhs| and // |rhs| and stores the result into the variable pointed to by |val| and // returns true if the signed summation resulted in an overflow. inline bool SignedAddOverflow64(int64_t lhs, int64_t rhs, int64_t* val) { … } // SignedSubOverflow64(lhs,rhs,val) performs a signed subtraction of |lhs| and // |rhs| and stores the result into the variable pointed to by |val| and // returns true if the signed subtraction resulted in an overflow. inline bool SignedSubOverflow64(int64_t lhs, int64_t rhs, int64_t* val) { … } // SignedMulOverflow64(lhs,rhs,val) performs a signed multiplication of |lhs| // and |rhs| and stores the result into the variable pointed to by |val| and // returns true if the signed multiplication resulted in an overflow. inline bool SignedMulOverflow64(int64_t lhs, int64_t rhs, int64_t* val) { … } // SignedMulHigh32(lhs, rhs) multiplies two signed 32-bit values |lhs| and // |rhs|, extracts the most significant 32 bits of the result, and returns // those. V8_BASE_EXPORT int32_t SignedMulHigh32(int32_t lhs, int32_t rhs); // UnsignedMulHigh32(lhs, rhs) multiplies two unsigned 32-bit values |lhs| and // |rhs|, extracts the most significant 32 bits of the result, and returns // those. V8_BASE_EXPORT uint32_t UnsignedMulHigh32(uint32_t lhs, uint32_t rhs); // SignedMulHigh64(lhs, rhs) multiplies two signed 64-bit values |lhs| and // |rhs|, extracts the most significant 64 bits of the result, and returns // those. V8_BASE_EXPORT int64_t SignedMulHigh64(int64_t lhs, int64_t rhs); // UnsignedMulHigh64(lhs, rhs) multiplies two unsigned 64-bit values |lhs| and // |rhs|, extracts the most significant 64 bits of the result, and returns // those. V8_BASE_EXPORT uint64_t UnsignedMulHigh64(uint64_t lhs, uint64_t rhs); // SignedMulHighAndAdd32(lhs, rhs, acc) multiplies two signed 32-bit values // |lhs| and |rhs|, extracts the most significant 32 bits of the result, and // adds the accumulate value |acc|. V8_BASE_EXPORT int32_t SignedMulHighAndAdd32(int32_t lhs, int32_t rhs, int32_t acc); // SignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient // truncated to int32. If |rhs| is zero, then zero is returned. If |lhs| // is minint and |rhs| is -1, it returns minint. V8_BASE_EXPORT int32_t SignedDiv32(int32_t lhs, int32_t rhs); // SignedDiv64(lhs, rhs) divides |lhs| by |rhs| and returns the quotient // truncated to int64. If |rhs| is zero, then zero is returned. If |lhs| // is minint and |rhs| is -1, it returns minint. V8_BASE_EXPORT int64_t SignedDiv64(int64_t lhs, int64_t rhs); // SignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder // truncated to int32. If either |rhs| is zero or |lhs| is minint and |rhs| // is -1, it returns zero. V8_BASE_EXPORT int32_t SignedMod32(int32_t lhs, int32_t rhs); // SignedMod64(lhs, rhs) divides |lhs| by |rhs| and returns the remainder // truncated to int64. If either |rhs| is zero or |lhs| is minint and |rhs| // is -1, it returns zero. V8_BASE_EXPORT int64_t SignedMod64(int64_t lhs, int64_t rhs); // UnsignedAddOverflow32(lhs,rhs,val) performs an unsigned summation of |lhs| // and |rhs| and stores the result into the variable pointed to by |val| and // returns true if the unsigned summation resulted in an overflow. inline bool UnsignedAddOverflow32(uint32_t lhs, uint32_t rhs, uint32_t* val) { … } // UnsignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient // truncated to uint32. If |rhs| is zero, then zero is returned. inline uint32_t UnsignedDiv32(uint32_t lhs, uint32_t rhs) { … } // UnsignedDiv64(lhs, rhs) divides |lhs| by |rhs| and returns the quotient // truncated to uint64. If |rhs| is zero, then zero is returned. inline uint64_t UnsignedDiv64(uint64_t lhs, uint64_t rhs) { … } // UnsignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder // truncated to uint32. If |rhs| is zero, then zero is returned. inline uint32_t UnsignedMod32(uint32_t lhs, uint32_t rhs) { … } // UnsignedMod64(lhs, rhs) divides |lhs| by |rhs| and returns the remainder // truncated to uint64. If |rhs| is zero, then zero is returned. inline uint64_t UnsignedMod64(uint64_t lhs, uint64_t rhs) { … } // Wraparound integer arithmetic without undefined behavior. inline int32_t WraparoundAdd32(int32_t lhs, int32_t rhs) { … } inline int32_t WraparoundNeg32(int32_t x) { … } // SignedSaturatedAdd64(lhs, rhs) adds |lhs| and |rhs|, // checks and returns the result. V8_BASE_EXPORT int64_t SignedSaturatedAdd64(int64_t lhs, int64_t rhs); // SignedSaturatedSub64(lhs, rhs) subtracts |lhs| by |rhs|, // checks and returns the result. V8_BASE_EXPORT int64_t SignedSaturatedSub64(int64_t lhs, int64_t rhs); template <class T> V8_BASE_EXPORT constexpr int BitWidth(T x) { … } } // namespace bits } // namespace base } // namespace v8 #endif // V8_BASE_BITS_H_