// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_NUMBERS_CONVERSIONS_H_ #define V8_NUMBERS_CONVERSIONS_H_ #include <optional> #include "src/base/export-template.h" #include "src/base/logging.h" #include "src/base/macros.h" #include "src/base/strings.h" #include "src/base/vector.h" #include "src/common/globals.h" namespace v8 { namespace internal { class BigInt; class SharedStringAccessGuardIfNeeded; // uint64_t constants prefixed with kFP64 are bit patterns of doubles. // uint64_t constants prefixed with kFP16 are bit patterns of doubles encoding // limits of half-precision floating point values. constexpr int kFP64ExponentBits = …; constexpr int kFP64MantissaBits = …; constexpr uint64_t kFP64ExponentBias = …; constexpr uint64_t kFP64SignMask = …; constexpr uint64_t kFP64Infinity = …; constexpr uint64_t kFP16InfinityAndNaNInfimum = …; constexpr uint64_t kFP16MinExponent = …; constexpr uint64_t kFP16DenormalThreshold = …; constexpr int kFP16MantissaBits = …; constexpr uint16_t kFP16qNaN = …; constexpr uint16_t kFP16Infinity = …; // A value that, when added, has the effect that if any of the lower 41 bits of // the mantissa are set, the 11th mantissa bit from the front becomes set. Used // for rounding when converting from double to half-precision. constexpr uint64_t kFP64To16RoundingAddend = …; // A value that, when added, rebiases the exponent of a double to the range of // the half precision and performs rounding as described above in // kFP64To16RoundingAddend. Note that 15-kFP64ExponentBias overflows into the // sign bit, but that bit is implicitly cut off when assigning the 64-bit double // to a 16-bit output. constexpr uint64_t kFP64To16RebiasExponentAndRound = …; // A magic value that aligns 10 mantissa bits at the bottom of the double when // added to a double using floating point addition. Depends on floating point // addition being round-to-nearest-even. constexpr uint64_t kFP64To16DenormalMagic = …; constexpr uint32_t kFP32WithoutSignMask = …; constexpr uint32_t kFP32MinFP16ZeroRepresentable = …; constexpr uint32_t kFP32MaxFP16Representable = …; constexpr uint32_t kFP32SubnormalThresholdOfFP16 = …; // The limit for the the fractionDigits/precision for toFixed, toPrecision // and toExponential. const int kMaxFractionDigits = …; // The fast double-to-(unsigned-)int conversion routine does not guarantee // rounding towards zero. // If x is NaN, the result is INT_MIN. Otherwise the result is the argument x, // clamped to [INT_MIN, INT_MAX] and then rounded to an integer. inline int FastD2IChecked(double x) { … } // The fast double-to-(unsigned-)int conversion routine does not guarantee // rounding towards zero. // The result is undefined if x is infinite or NaN, or if the rounded // integer value is outside the range of type int. inline int FastD2I(double x) { … } inline unsigned int FastD2UI(double x); inline double FastI2D(int x) { … } inline double FastUI2D(unsigned x) { … } // This function should match the exact semantics of ECMA-262 20.2.2.17. inline float DoubleToFloat32(double x); V8_EXPORT_PRIVATE float DoubleToFloat32_NoInline(double x); // This function should match the exact semantics of truncating x to // IEEE 754-2019 binary16 format using roundTiesToEven mode. inline uint16_t DoubleToFloat16(double x); // This function should match the exact semantics of ECMA-262 9.4. inline double DoubleToInteger(double x); // This function should match the exact semantics of ECMA-262 9.5. inline int32_t DoubleToInt32(double x); V8_EXPORT_PRIVATE int32_t DoubleToInt32_NoInline(double x); // This function should match the exact semantics of ECMA-262 9.6. inline uint32_t DoubleToUint32(double x); // These functions have similar semantics as the ones above, but are // added for 64-bit integer types. inline int64_t DoubleToInt64(double x); inline uint64_t DoubleToUint64(double x); // Enumeration for allowing radix prefixes or ignoring junk when converting // strings to numbers. We never need to be able to allow both. enum ConversionFlag { … }; // Converts a string into a double value according to ECMA-262 9.3.1 double StringToDouble(base::Vector<const uint8_t> str, ConversionFlag flag, double empty_string_val = 0); double StringToDouble(base::Vector<const base::uc16> str, ConversionFlag flag, double empty_string_val = 0); // This version expects a zero-terminated character array. double V8_EXPORT_PRIVATE StringToDouble(const char* str, ConversionFlag flag, double empty_string_val = 0); // Converts a binary string (of the form `0b[0-1]*`) into a double value // according to https://tc39.es/ecma262/#sec-numericvalue double V8_EXPORT_PRIVATE BinaryStringToDouble(base::Vector<const uint8_t> str); // Converts an octal string (of the form `0o[0-8]*`) into a double value // according to https://tc39.es/ecma262/#sec-numericvalue double V8_EXPORT_PRIVATE OctalStringToDouble(base::Vector<const uint8_t> str); // Converts a hex string (of the form `0x[0-9a-f]*`) into a double value // according to https://tc39.es/ecma262/#sec-numericvalue double V8_EXPORT_PRIVATE HexStringToDouble(base::Vector<const uint8_t> str); // Converts an implicit octal string (a.k.a. LegacyOctalIntegerLiteral, of the // form `0[0-7]*`) into a double value according to // https://tc39.es/ecma262/#sec-numericvalue double V8_EXPORT_PRIVATE ImplicitOctalStringToDouble(base::Vector<const uint8_t> str); double StringToInt(Isolate* isolate, Handle<String> string, int radix); // This follows https://tc39.github.io/proposal-bigint/#sec-string-to-bigint // semantics: "" => 0n. MaybeHandle<BigInt> StringToBigInt(Isolate* isolate, Handle<String> string); // This version expects a zero-terminated character array. Radix will // be inferred from string prefix (case-insensitive): // 0x -> hex // 0o -> octal // 0b -> binary template <typename IsolateT> EXPORT_TEMPLATE_DECLARE(V8_EXPORT_PRIVATE) MaybeHandle<BigInt> BigIntLiteral(IsolateT* isolate, const char* string); const int kDoubleToCStringMinBufferSize = …; // Converts a double to a string value according to ECMA-262 9.8.1. // The buffer should be large enough for any floating point number. // 100 characters is enough. V8_EXPORT_PRIVATE const char* DoubleToCString(double value, base::Vector<char> buffer); V8_EXPORT_PRIVATE std::unique_ptr<char[]> BigIntLiteralToDecimal( LocalIsolate* isolate, base::Vector<const uint8_t> literal); // Convert an int to a null-terminated string. The returned string is // located inside the buffer, but not necessarily at the start. V8_EXPORT_PRIVATE const char* IntToCString(int n, base::Vector<char> buffer); // Additional number to string conversions for the number type. // The caller is responsible for calling free on the returned pointer. char* DoubleToFixedCString(double value, int f); char* DoubleToExponentialCString(double value, int f); char* DoubleToPrecisionCString(double value, int f); char* DoubleToRadixCString(double value, int radix); static inline bool IsMinusZero(double value) { … } // Returns true if value can be converted to a SMI, and returns the resulting // integer value of the SMI in |smi_int_value|. inline bool DoubleToSmiInteger(double value, int* smi_int_value); inline bool IsSmiDouble(double value); // Integer32 is an integer that can be represented as a signed 32-bit // integer. It has to be in the range [-2^31, 2^31 - 1]. // We also have to check for negative 0 as it is not an Integer32. inline bool IsInt32Double(double value); // UInteger32 is an integer that can be represented as an unsigned 32-bit // integer. It has to be in the range [0, 2^32 - 1]. // We also have to check for negative 0 as it is not a UInteger32. inline bool IsUint32Double(double value); // Tries to convert |value| to a uint32, setting the result in |uint32_value|. // If the output does not compare equal to the input, returns false and the // value in |uint32_value| is left unspecified. // Used for conversions such as in ECMA-262 15.4.2.2, which check "ToUint32(len) // is equal to len". inline bool DoubleToUint32IfEqualToSelf(double value, uint32_t* uint32_value); // Convert from Number object to C integer. inline uint32_t PositiveNumberToUint32(Tagged<Object> number); inline int32_t NumberToInt32(Tagged<Object> number); inline uint32_t NumberToUint32(Tagged<Object> number); inline int64_t NumberToInt64(Tagged<Object> number); inline uint64_t PositiveNumberToUint64(Tagged<Object> number); double StringToDouble(Isolate* isolate, Handle<String> string, ConversionFlag flags, double empty_string_val = 0.0); double FlatStringToDouble(Tagged<String> string, ConversionFlag flags, double empty_string_val); // String to double helper without heap allocation. // Returns std::nullopt if the string is longer than // {max_length_for_conversion}. 23 was chosen because any representable double // can be represented using a string of length 23. V8_EXPORT_PRIVATE std::optional<double> TryStringToDouble( LocalIsolate* isolate, DirectHandle<String> object, int max_length_for_conversion = 23); // Return std::nullopt if the string is longer than 20. V8_EXPORT_PRIVATE std::optional<double> TryStringToInt( LocalIsolate* isolate, DirectHandle<String> object, int radix); inline bool TryNumberToSize(Tagged<Object> number, size_t* result); // Converts a number into size_t. inline size_t NumberToSize(Tagged<Object> number); // returns DoubleToString(StringToDouble(string)) == string V8_EXPORT_PRIVATE bool IsSpecialIndex( Tagged<String> string, SharedStringAccessGuardIfNeeded& access_guard); V8_EXPORT_PRIVATE bool IsSpecialIndex(Tagged<String> string); } // namespace internal } // namespace v8 #endif // V8_NUMBERS_CONVERSIONS_H_