// GENERATED CONTENT - DO NOT EDIT
// Content was automatically extracted by Reffy into webref
// (https://github.com/w3c/webref)
// Source: Web Neural Network API (https://webmachinelearning.github.io/webnn/)
interface mixin NavigatorML {
[SecureContext, SameObject] readonly attribute ML ml;
};
Navigator includes NavigatorML;
WorkerNavigator includes NavigatorML;
enum MLDeviceType {
"cpu",
"gpu",
"npu"
};
enum MLPowerPreference {
"default",
"high-performance",
"low-power"
};
dictionary MLContextOptions {
MLDeviceType deviceType = "cpu";
MLPowerPreference powerPreference = "default";
};
[SecureContext, Exposed=(Window, DedicatedWorker)]
interface ML {
Promise<MLContext> createContext(optional MLContextOptions options = {});
Promise<MLContext> createContext(GPUDevice gpuDevice);
};
typedef record<USVString, ArrayBufferView> MLNamedArrayBufferViews;
dictionary MLComputeResult {
MLNamedArrayBufferViews inputs;
MLNamedArrayBufferViews outputs;
};
[SecureContext, Exposed=(Window, DedicatedWorker)]
interface MLContext {
Promise<MLComputeResult> compute(
MLGraph graph, MLNamedArrayBufferViews inputs, MLNamedArrayBufferViews outputs);
};
[SecureContext, Exposed=(Window, DedicatedWorker)]
interface MLGraph {};
enum MLInputOperandLayout {
"nchw",
"nhwc"
};
enum MLOperandDataType {
"float32",
"float16",
"int32",
"uint32",
"int64",
"uint64",
"int8",
"uint8"
};
dictionary MLOperandDescriptor {
required MLOperandDataType dataType;
sequence<[EnforceRange] unsigned long> dimensions = [];
};
[SecureContext, Exposed=(Window, DedicatedWorker)]
interface MLOperand {
MLOperandDataType dataType();
sequence<unsigned long> shape();
};
dictionary MLOperatorOptions {
USVString label = "";
};
typedef (bigint or unrestricted double) MLNumber;
typedef record<USVString, MLOperand> MLNamedOperands;
[SecureContext, Exposed=(Window, DedicatedWorker)]
interface MLGraphBuilder {
// Construct the graph builder from the context.
constructor(MLContext context);
// Create an operand for a graph input.
MLOperand input(USVString name, MLOperandDescriptor descriptor);
// Create an operand for a graph constant.
MLOperand constant(MLOperandDescriptor descriptor, ArrayBufferView bufferView);
// Create a scalar operand from the specified number of the specified type.
MLOperand constant(MLOperandDataType type, MLNumber value);
// Compile the graph up to the specified output operands asynchronously.
Promise<MLGraph> build(MLNamedOperands outputs);
};
dictionary MLArgMinMaxOptions : MLOperatorOptions {
boolean keepDimensions = false;
MLOperandDataType outputDataType = "int32";
};
partial interface MLGraphBuilder {
MLOperand argMin(MLOperand input, [EnforceRange] unsigned long axis,
optional MLArgMinMaxOptions options = {});
MLOperand argMax(MLOperand input, [EnforceRange] unsigned long axis,
optional MLArgMinMaxOptions options = {});
};
dictionary MLBatchNormalizationOptions : MLOperatorOptions {
MLOperand scale;
MLOperand bias;
[EnforceRange] unsigned long axis = 1;
double epsilon = 1e-5;
};
partial interface MLGraphBuilder {
MLOperand batchNormalization(MLOperand input, MLOperand mean, MLOperand variance,
optional MLBatchNormalizationOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand cast(MLOperand input,
MLOperandDataType type,
optional MLOperatorOptions options = {});
};
dictionary MLClampOptions : MLOperatorOptions {
MLNumber minValue;
MLNumber maxValue;
};
partial interface MLGraphBuilder {
MLOperand clamp(MLOperand input, optional MLClampOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand concat(sequence<MLOperand> inputs,
[EnforceRange] unsigned long axis,
optional MLOperatorOptions options = {});
};
enum MLConv2dFilterOperandLayout {
"oihw",
"hwio",
"ohwi",
"ihwo"
};
dictionary MLConv2dOptions : MLOperatorOptions {
sequence<[EnforceRange] unsigned long> padding;
sequence<[EnforceRange] unsigned long> strides;
sequence<[EnforceRange] unsigned long> dilations;
[EnforceRange] unsigned long groups = 1;
MLInputOperandLayout inputLayout = "nchw";
MLConv2dFilterOperandLayout filterLayout = "oihw";
MLOperand bias;
};
partial interface MLGraphBuilder {
MLOperand conv2d(MLOperand input,
MLOperand filter,
optional MLConv2dOptions options = {});
};
enum MLConvTranspose2dFilterOperandLayout {
"iohw",
"hwoi",
"ohwi"
};
dictionary MLConvTranspose2dOptions : MLOperatorOptions {
sequence<[EnforceRange] unsigned long> padding;
sequence<[EnforceRange] unsigned long> strides;
sequence<[EnforceRange] unsigned long> dilations;
sequence<[EnforceRange] unsigned long> outputPadding;
sequence<[EnforceRange] unsigned long> outputSizes;
[EnforceRange] unsigned long groups = 1;
MLInputOperandLayout inputLayout = "nchw";
MLConvTranspose2dFilterOperandLayout filterLayout = "iohw";
MLOperand bias;
};
partial interface MLGraphBuilder {
MLOperand convTranspose2d(MLOperand input, MLOperand filter,
optional MLConvTranspose2dOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand add(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
MLOperand sub(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
MLOperand mul(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
MLOperand div(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
MLOperand max(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
MLOperand min(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
MLOperand pow(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand equal(MLOperand a,
MLOperand b,
optional MLOperatorOptions options = {});
MLOperand greater(MLOperand a,
MLOperand b,
optional MLOperatorOptions options = {});
MLOperand greaterOrEqual(MLOperand a,
MLOperand b,
optional MLOperatorOptions options = {});
MLOperand lesser(MLOperand a,
MLOperand b,
optional MLOperatorOptions options = {});
MLOperand lesserOrEqual(MLOperand a,
MLOperand b,
optional MLOperatorOptions options = {});
MLOperand logicalNot(MLOperand a, optional MLOperatorOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand abs(MLOperand input, optional MLOperatorOptions options = {});
MLOperand ceil(MLOperand input, optional MLOperatorOptions options = {});
MLOperand cos(MLOperand input, optional MLOperatorOptions options = {});
MLOperand erf(MLOperand input, optional MLOperatorOptions options = {});
MLOperand exp(MLOperand input, optional MLOperatorOptions options = {});
MLOperand floor(MLOperand input, optional MLOperatorOptions options = {});
MLOperand identity(MLOperand input, optional MLOperatorOptions options = {});
MLOperand log(MLOperand input, optional MLOperatorOptions options = {});
MLOperand neg(MLOperand input, optional MLOperatorOptions options = {});
MLOperand reciprocal(MLOperand input, optional MLOperatorOptions options = {});
MLOperand sin(MLOperand input, optional MLOperatorOptions options = {});
MLOperand sqrt(MLOperand input, optional MLOperatorOptions options = {});
MLOperand tan(MLOperand input, optional MLOperatorOptions options = {});
};
dictionary MLEluOptions : MLOperatorOptions {
double alpha = 1;
};
partial interface MLGraphBuilder {
MLOperand elu(MLOperand input, optional MLEluOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand expand(MLOperand input,
sequence<[EnforceRange] unsigned long> newShape,
optional MLOperatorOptions options = {});
};
dictionary MLGatherOptions : MLOperatorOptions {
[EnforceRange] unsigned long axis = 0;
};
partial interface MLGraphBuilder {
MLOperand gather(MLOperand input,
MLOperand indices,
optional MLGatherOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand gelu(MLOperand input, optional MLOperatorOptions options = {});
};
dictionary MLGemmOptions : MLOperatorOptions {
MLOperand c;
double alpha = 1.0;
double beta = 1.0;
boolean aTranspose = false;
boolean bTranspose = false;
};
partial interface MLGraphBuilder {
MLOperand gemm(MLOperand a, MLOperand b, optional MLGemmOptions options = {});
};
enum MLGruWeightLayout {
"zrn", // update-reset-new gate ordering
"rzn" // reset-update-new gate ordering
};
enum MLRecurrentNetworkActivation {
"relu",
"sigmoid",
"tanh"
};
enum MLRecurrentNetworkDirection {
"forward",
"backward",
"both"
};
dictionary MLGruOptions : MLOperatorOptions {
MLOperand bias;
MLOperand recurrentBias;
MLOperand initialHiddenState;
boolean resetAfter = true;
boolean returnSequence = false;
MLRecurrentNetworkDirection direction = "forward";
MLGruWeightLayout layout = "zrn";
sequence<MLRecurrentNetworkActivation> activations;
};
partial interface MLGraphBuilder {
sequence<MLOperand> gru(MLOperand input,
MLOperand weight,
MLOperand recurrentWeight,
[EnforceRange] unsigned long steps,
[EnforceRange] unsigned long hiddenSize,
optional MLGruOptions options = {});
};
dictionary MLGruCellOptions : MLOperatorOptions {
MLOperand bias;
MLOperand recurrentBias;
boolean resetAfter = true;
MLGruWeightLayout layout = "zrn";
sequence<MLRecurrentNetworkActivation> activations;
};
partial interface MLGraphBuilder {
MLOperand gruCell(MLOperand input,
MLOperand weight,
MLOperand recurrentWeight,
MLOperand hiddenState,
[EnforceRange] unsigned long hiddenSize,
optional MLGruCellOptions options = {});
};
dictionary MLHardSigmoidOptions : MLOperatorOptions {
double alpha = 0.2;
double beta = 0.5;
};
partial interface MLGraphBuilder {
MLOperand hardSigmoid(MLOperand input, optional MLHardSigmoidOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand hardSwish(MLOperand input, optional MLOperatorOptions options = {});
};
dictionary MLInstanceNormalizationOptions : MLOperatorOptions {
MLOperand scale;
MLOperand bias;
double epsilon = 1e-5;
MLInputOperandLayout layout = "nchw";
};
partial interface MLGraphBuilder {
MLOperand instanceNormalization(MLOperand input,
optional MLInstanceNormalizationOptions options = {});
};
dictionary MLLayerNormalizationOptions : MLOperatorOptions {
MLOperand scale;
MLOperand bias;
sequence<[EnforceRange] unsigned long> axes;
double epsilon = 1e-5;
};
partial interface MLGraphBuilder {
MLOperand layerNormalization(MLOperand input,
optional MLLayerNormalizationOptions options = {});
};
dictionary MLLeakyReluOptions : MLOperatorOptions {
double alpha = 0.01;
};
partial interface MLGraphBuilder {
MLOperand leakyRelu(MLOperand input, optional MLLeakyReluOptions options = {});
};
dictionary MLLinearOptions : MLOperatorOptions {
double alpha = 1;
double beta = 0;
};
partial interface MLGraphBuilder {
MLOperand linear(MLOperand input, optional MLLinearOptions options = {});
};
enum MLLstmWeightLayout {
"iofg", // input-output-forget-cell gate ordering
"ifgo" // input-forget-cell-output gate ordering
};
dictionary MLLstmOptions : MLOperatorOptions {
MLOperand bias;
MLOperand recurrentBias;
MLOperand peepholeWeight;
MLOperand initialHiddenState;
MLOperand initialCellState;
boolean returnSequence = false;
MLRecurrentNetworkDirection direction = "forward";
MLLstmWeightLayout layout = "iofg";
sequence<MLRecurrentNetworkActivation> activations;
};
partial interface MLGraphBuilder {
sequence<MLOperand> lstm(MLOperand input,
MLOperand weight,
MLOperand recurrentWeight,
[EnforceRange] unsigned long steps,
[EnforceRange] unsigned long hiddenSize,
optional MLLstmOptions options = {});
};
dictionary MLLstmCellOptions : MLOperatorOptions {
MLOperand bias;
MLOperand recurrentBias;
MLOperand peepholeWeight;
MLLstmWeightLayout layout = "iofg";
sequence<MLRecurrentNetworkActivation> activations;
};
partial interface MLGraphBuilder {
sequence<MLOperand> lstmCell(MLOperand input,
MLOperand weight,
MLOperand recurrentWeight,
MLOperand hiddenState,
MLOperand cellState,
[EnforceRange] unsigned long hiddenSize,
optional MLLstmCellOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand matmul(MLOperand a, MLOperand b, optional MLOperatorOptions options = {});
};
enum MLPaddingMode {
"constant",
"edge",
"reflection",
"symmetric"
};
dictionary MLPadOptions : MLOperatorOptions {
MLPaddingMode mode = "constant";
MLNumber value = 0;
};
partial interface MLGraphBuilder {
MLOperand pad(MLOperand input,
sequence<[EnforceRange] unsigned long> beginningPadding,
sequence<[EnforceRange] unsigned long> endingPadding,
optional MLPadOptions options = {});
};
enum MLRoundingType {
"floor",
"ceil"
};
dictionary MLPool2dOptions : MLOperatorOptions {
sequence<[EnforceRange] unsigned long> windowDimensions;
sequence<[EnforceRange] unsigned long> padding;
sequence<[EnforceRange] unsigned long> strides;
sequence<[EnforceRange] unsigned long> dilations;
MLInputOperandLayout layout = "nchw";
MLRoundingType roundingType = "floor";
sequence<[EnforceRange] unsigned long> outputSizes;
};
partial interface MLGraphBuilder {
MLOperand averagePool2d(MLOperand input, optional MLPool2dOptions options = {});
MLOperand l2Pool2d(MLOperand input, optional MLPool2dOptions options = {});
MLOperand maxPool2d(MLOperand input, optional MLPool2dOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand prelu(MLOperand input,
MLOperand slope,
optional MLOperatorOptions options = {});
};
dictionary MLReduceOptions : MLOperatorOptions {
sequence<[EnforceRange] unsigned long> axes;
boolean keepDimensions = false;
};
partial interface MLGraphBuilder {
MLOperand reduceL1(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceL2(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceLogSum(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceLogSumExp(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceMax(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceMean(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceMin(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceProduct(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceSum(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceSumSquare(MLOperand input, optional MLReduceOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand relu(MLOperand input, optional MLOperatorOptions options = {});
};
enum MLInterpolationMode {
"nearest-neighbor",
"linear"
};
dictionary MLResample2dOptions : MLOperatorOptions {
MLInterpolationMode mode = "nearest-neighbor";
sequence<float> scales;
sequence<[EnforceRange] unsigned long> sizes;
sequence<[EnforceRange] unsigned long> axes;
};
partial interface MLGraphBuilder {
MLOperand resample2d(MLOperand input, optional MLResample2dOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand reshape(MLOperand input,
sequence<[EnforceRange] unsigned long> newShape,
optional MLOperatorOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand sigmoid(MLOperand input, optional MLOperatorOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand slice(MLOperand input,
sequence<[EnforceRange] unsigned long> starts,
sequence<[EnforceRange] unsigned long> sizes,
optional MLOperatorOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand softmax(MLOperand input,
[EnforceRange] unsigned long axis,
optional MLOperatorOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand softplus(MLOperand input, optional MLOperatorOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand softsign(MLOperand input, optional MLOperatorOptions options = {});
};
dictionary MLSplitOptions : MLOperatorOptions {
[EnforceRange] unsigned long axis = 0;
};
partial interface MLGraphBuilder {
sequence<MLOperand> split(
MLOperand input,
([EnforceRange] unsigned long or sequence<[EnforceRange] unsigned long>) splits,
optional MLSplitOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand tanh(MLOperand input, optional MLOperatorOptions options = {});
};
dictionary MLTransposeOptions : MLOperatorOptions {
sequence<[EnforceRange] unsigned long> permutation;
};
partial interface MLGraphBuilder {
MLOperand transpose(MLOperand input, optional MLTransposeOptions options = {});
};
dictionary MLTriangularOptions : MLOperatorOptions {
boolean upper = true;
[EnforceRange] long diagonal = 0;
};
partial interface MLGraphBuilder {
MLOperand triangular(MLOperand input, optional MLTriangularOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand where(MLOperand condition,
MLOperand trueValue,
MLOperand falseValue,
optional MLOperatorOptions options = {});
};